Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The properties of an interface at the hole transport layer (HTL)/perovskite layer are crucial for the performance and stability of perovskite solar cells (PVSCs), especially the buried interface between HTL and perovskite layer. Here, a molecular named potassium 1-trifluoroboratomethylpiperidine (3FPIP) assistant-modified perovskite bottom interface strategy is proposed to improve the charge transfer capability and balances energy level between HTL and perovskite. BF in the 3FPIP molecule interacts with undercoordinated Pb to passivate iodine vacancies and enhance PVSCs performance. Furthermore, the infiltration of K ions into perovskite molecules enhances the crystallinity and stability of perovskite. Therefore, the PVSCs with the buried interface treatment exhibit a champion performance of 24.6%. More importantly, the corresponding devices represent outstanding ambient stability, remaining at 92% of the initial efficiency after 1200 h. This work provides a new method of buried interface engineering with functional group synergy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202403494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!