A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data. | LitMetric

Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data.

Expert Opin Drug Discov

Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA.

Published: July 2024

Introduction: Prostate cancer (PC) is the most common malignancy and accounts for a significant proportion of cancer deaths among men. Although initial therapy success can often be observed in patients diagnosed with localized PC, many patients eventually develop disease recurrence and metastasis. Without effective treatments, patients with aggressive PC display very poor survival. To curb the current high mortality rate, many investigations have been carried out to identify efficacious therapeutics. Compared to de novo drug designs, computational methods have been widely employed to offer actionable drug predictions in a fast and cost-efficient way. Particularly, powered by an increasing availability of next-generation sequencing molecular profiles from PC patients, computer-aided approaches can be tailored to screen for candidate drugs.

Areas Covered: Herein, the authors review the recent advances in computational methods for drug discovery utilizing molecular profiles from PC patients. Given the uniqueness in PC therapeutic needs, they discuss in detail the drug discovery goals of these studies, highlighting their translational values for clinically impactful drug nomination.

Expert Opinion: Evolving molecular profiling techniques may enable new perspectives for computer-aided approaches to offer drug candidates for different tumor microenvironments. With ongoing efforts to incorporate new compounds into large-scale high-throughput screens, the authors envision continued expansion of drug candidate pools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537242PMC
http://dx.doi.org/10.1080/17460441.2024.2365370DOI Listing

Publication Analysis

Top Keywords

drug discovery
12
prostate cancer
8
computational methods
8
molecular profiles
8
profiles patients
8
computer-aided approaches
8
drug
7
patients
5
computer-aided drug
4
discovery strategies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!