A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural identification of single boron-doped graphdiynes by computational XPS and NEXAFS spectroscopy. | LitMetric

Boron-doped graphdiyne (B-GDY) material exhibits an excellent performance in electrocatalysis, ion transport, and energy storage. However, accurately identifying the structures of B-GDY in experiments remains a challenge, hindering further selection of suitable structures with the most ideal performance for various practical applications. In the present work, we employed density functional theory (DFT) to simulate the X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectra of pristine graphdiyne (GDY) and six representative single boron-doped graphdiynes at the B and C K-edges to establish the structure-spectroscopy relationship. A notable disparity in the C 1s ionization potentials (IPs) between substituted and adsorbed structures is observed upon doping with a boron atom. By analyzing the C and B 1s NEXAFS spectra on energy positions, spectral widths, spectral intensities, and different spectral profiles, we found that the six single boron-doped graphdiyne configurations can be sensitively identified. Moreover, this study provides a reliable theoretical reference for distinguishing different single boron-doped graphdiyne structures, enabling accurate selection of B-GDY structures for diverse practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp01222dDOI Listing

Publication Analysis

Top Keywords

single boron-doped
16
boron-doped graphdiyne
12
boron-doped graphdiynes
8
practical applications
8
nexafs spectra
8
boron-doped
5
structures
5
structural identification
4
single
4
identification single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!