Background: Hearing loss (HL) is the most frequent sensory deficit in humans, with strong genetic heterogeneity. The genetic diagnosis of HL is very important to aid treatment decisions and to provide prognostic information and genetic counselling for the patient's family.
Methods: We detected and analysed 362 Chinese non-syndromic HL patients by screening of variants in 15 hot spot mutations. Subsequently, 40 patients underwent further whole-exome sequencing (WES) to determine genetic aetiology. The candidate variants were verified using Sanger sequencing. Twenty-three carrier couples with pathogenic variants or likely pathogenic variants chose to proceed with prenatal diagnosis using Sanger sequencing.
Results: Among the 362 HL patients, 102 were assigned a molecular diagnosis with 52 different variants in 22 deafness genes. A total of 41 (11.33%) cases with the biallelic GJB2 (OMIM # 220290) gene mutations were detected, and 21 (5.80%) had biallelic SLC26A4 (OMIM # 605646) mutations. Mitochondrial gene (OMIM # 561000) mutations were detected in seven (1.93%) patients. Twenty of the variants in 15 deafness genes were novel. SOX10 (OMIM # 602229), MYO15A (OMIM # 602666) and WFS1 (OMIM # 606201) were each detected in two patients. Meanwhile, OSBPL2 (OMIM # 606731), RRM2B (OMIM # 604712), OTOG (OMIM # 604487), STRC (OMIM # 606440), PCDH15 (OMIM # 605514), LOXHD1 (OMIM # 613072), CDH23 (OMIM # 605516), TMC1 (OMIM # 606706), CHD7 (OMIM # 608892), DIAPH3 (OMIM # 614567), TBC1D24 (OMIM # 613577), TIMM8A (OMIM # 300356), PTPRQ (OMIM # 603317), SALL1 (OMIM # 602218), and GSDME (OMIM # 608798) were each detected in one patient. In addition, as regards one couple with a heterozygous variant of CDH23 and PCDH15, respectively, prenatal diagnosis results suggest that the foetus had double heterozygous (DH) variants of CDH23 and PCDH15, which has a high risk to cause ID/F type Usher syndrome.
Conclusion: Our study expanded the spectrum of deafness gene variation, which will contribute to the genetic diagnosis, prenatal diagnosis and the procreation guidance of deaf couple. In addition, the deafness caused by two genes should be paid attention to in the prenatal diagnosis of families with both deaf patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165335 | PMC |
http://dx.doi.org/10.1002/mgg3.2434 | DOI Listing |
Introduction: 58 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China.
Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.
Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.
Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, Shandong, China.
Obesity (OB) and atherosclerosis (AS) represent two highly prevalent and detrimental chronic diseases that are intricately linked. However, the shared genetic signatures and molecular pathways underlying these two conditions remain elusive. This study aimed to identify the shared diagnostic genes and the associated molecular mechanism between OB and AS.
View Article and Find Full Text PDFMol Cell
January 2025
Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!