Several studies have inferred the ecological significance regarding the morphometrics of Aristotle's lantern and the mechanical properties of magnesium in echinoid teeth. This study attempts to combine these aspects, connecting them to the trophic habits of three native and an invasive echinoid in the Eastern Mediterranean Sea. Spatiotemporal data from the central and southern Aegean Sea were obtained, regarding the relative size of lanterns and demi-pyramids of , , and the invasive echinoid and the Mg/Ca ratios of four zones on the tooth cross-section. Since environmental factors affect the examined factors, data for temperature, salinity, and concentration of chlorophyll-a were included in a principal component analysis. and presented intraspecific differences in the relative size of the lantern and demi-pyramid, while and exhibited variation in the elongation index. Differences in the Mg/Ca ratios were observed for all species although in different zones. Temperature appears to be related to all Mg/Ca zones except for the stone part, while the elongation index showed an inverse trend to all other morphometric parameters. The results of the PCA for the four species on the spatiotemporal level exhibited a distinction of individuals with season but not species, except for , an omnivore with a carnivorous tendency, which was clearly separated from the herbivorous species. Using hierarchical clustering on the principal components it was evident that the three native species occupy different clusters, but when was added, it shared the same cluster with . This might infer similar feeding preferences, specifically for coralline algae, which might lead to a swift in the ecological equilibrium in regions, where is found, either by affecting habitat type, or by restricting the distribution of as was previously observed with .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163157 | PMC |
http://dx.doi.org/10.1002/ece3.11251 | DOI Listing |
Sci Rep
January 2025
Marine Biotechnology Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P O, Kochi, Kerala, 682018, India.
The Indian scad, Decapterus russelli is one of the most exploited pelagic resources of India. Population genetic analyses using mitochondrial and nuclear markers indicated a lack of genetic structuring among populations from Indian waters. As this species is highly migratory, it is also important to establish the environmental influence on its population structure.
View Article and Find Full Text PDFThe potential application of materials referred to as perovskite hydrides in hydrogen storage - a crucial element of renewable energy systems - has sparked a great deal of interest. We use density functional theory (DFT) to investigate the structural, formation energy, hydrogen storage, electronics, thermoelectric and elastic properties of NaXH (X = Be, Mg, Ca, and Sr) hydrides. The band gap is calculated using WC-GGA and WC-GGA+mBJ potentials.
View Article and Find Full Text PDFSci Rep
January 2025
Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).
View Article and Find Full Text PDFJ Chem Phys
January 2025
Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
Auxetic materials hold tremendous potential for many advanced applications, but candidates are quite scarce, especially at two dimensions. Here, we focus on two-dimensional (2D) metal dichalcogenides and dihalides with the chemical formula MX2 by screening structures sharing the P4̄m2 space group among 330 MX2 compounds from the computational 2D materials database. Via high-throughput first-principles computations, 25 stable MX2 (M = Mg, Ca, Mn, Co, Ni, Cu, Zn, Ge, Cd, Sn; X = F, Cl, Br, I, O, S, Se) systems with in-plane negative Poisson's ratios (NPRs) are successfully identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!