Three-Dimensional Imaging of Bioinspired Lipidic Mesophases Using Multicolored Light-Emitting Carbon Nanodots.

J Phys Chem Lett

Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.

Published: June 2024

Recent progress in the design of carbon nanostructures exhibiting strong multiphoton-excited emission opens new pathways to explore the self-organization of lipids found in living organisms. Phospholipid-based lyotropic myelin figures (MFs) are promising materials as simplified models of biomembranes due to their structural resemblance to a multilamellar sheath insulating the axon. This study demonstrates the possibility of selective labeling of MFs by strongly emitting multicolor phloroglucinol-derived carbon nanodots (PG CNDs). Such dopants are efficiently excited by visible and near-infrared light; therefore, one- and two-photon fluorescence microscopies are incorporated to gain 3D insights into the MFs. Combining nondestructive fluorescence microscopy and spectroscopy techniques along with polarized light microscopy gives details on the stability and morphology of lipidic mesophases. Our findings suggest that PG CNDs can be a viable and simple alternative to conventional fluorescent lipid stains to image biologically relevant phospholipid-based structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194803PMC
http://dx.doi.org/10.1021/acs.jpclett.4c00788DOI Listing

Publication Analysis

Top Keywords

lipidic mesophases
8
carbon nanodots
8
three-dimensional imaging
4
imaging bioinspired
4
bioinspired lipidic
4
mesophases multicolored
4
multicolored light-emitting
4
light-emitting carbon
4
nanodots progress
4
progress design
4

Similar Publications

Low-frequency Raman spectroscopy as a new tool for understanding the behaviour of ionisable compounds in dispersed mesophases.

J Colloid Interface Sci

December 2024

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville 3052, VIC Australia. Electronic address:

Hypothesis: Low-frequency Raman (LFR) spectroscopy is proposed as a novel non-destructive methodology to probe pH-related phase transitions in self-assembled lipid particles. In this case, dispersed lipid mesophases were composed of ionisable oleic acid (OA) or nicergoline (NG) in monoolein (MO). The sensitivity of LFR spectroscopy to low-energy intermolecular vibrations was hypothesised to be due to structural transformation in ionisable dispersed mesophases upon changes in pH.

View Article and Find Full Text PDF

Self-assembly of dry amphiphilic lipid films on surfaces upon hydration is a crucial step in the formation of cell-like giant unilamellar vesicles (GUVs). GUVs are useful as biophysical models, as soft materials, as chassis for bottom-up synthetic biology, and in biomedical applications. Here combined quantitative measurements of the molar yield and distributions of sizes and high-resolution imaging of the evolution of thin lipid films on surfaces, we report the discovery of a previously unknown pathway of lipid self-assembly which can lead to ultrahigh yields of GUVs of >50%.

View Article and Find Full Text PDF

From Water Under Confinement to Understanding Life at Subzero Temperatures.

Chimia (Aarau)

October 2024

Department of Chemistry, University of Basel, CH-4058 Basel, Switzerland.

Article Synopsis
  • Water's behavior in confined spaces is crucial to various fields like biology and geology, as it significantly affects material properties and functions.
  • The characteristics of water change in these confined environments, especially in terms of crystallization and molecular dynamics, compared to regular bulk water.
  • Interestingly, water can stay liquid at very low temperatures within nano-sized confinements, revealing insights into fundamental physics and possible implications for life in extremely cold conditions.
View Article and Find Full Text PDF

Innovative use of lipid mesophase dispersions for bisphenol A sequestration in water.

J Colloid Interface Sci

February 2025

Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France.

Hypothesis: Mesophase dispersions are promising colloids for removing micropollutants from water. We hypothesized that the complex internal nanostructure and tunable lipid/water interface amounts play a crucial role in absorbed quantities. Modifications in interfacial organization within the particles while trapping the micropollutant is assumed.

View Article and Find Full Text PDF

Temozolomide (TMZ) is a prodrug possessing a wide spectrum of anticancer activities. TMZ is pharmacologically inactive, but at a physiological pH, it is quickly converted to an active metabolite, 5-aminoimidazole-4-carboxamide, and a methyldiazonium cation. Due to its chemical nature, TMZ presents some capability of crossing the blood-brain barrier and therefore is used as a first-line agent in the treatment of gliomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!