Optical traps, including those used in atomic physics, cold chemistry, and quantum science, are widely used in the research on cold atoms and molecules. Owing to their microscopic structure and excellent operational capability, optical traps have been proposed for cold atom experiments involving complex physical systems, which generally induce violent background scattering. In this study, using a background-free imaging scheme in cavity quantum electrodynamics systems, a cold atomic ensemble was accurately prepared below a fiber cavity and loaded into an optical trap for transfer into the cavity. By satisfying the demanding requirements for the background-free imaging scheme in optical traps, cold atoms in an optical trap were detected with a high signal-to-noise ratio while maintaining atomic loading. The cold atoms were then transferred into the fiber cavity using an optical trap, and the vacuum Rabi splitting was measured, facilitating relevant research on cavity quantum electrodynamics. This method can be extended to related experiments involving cold atoms and molecules in complex physical systems using optical traps.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.523169DOI Listing

Publication Analysis

Top Keywords

cold atoms
20
optical traps
20
background-free imaging
12
optical trap
12
cold
8
optical
8
atoms optical
8
atoms molecules
8
experiments involving
8
complex physical
8

Similar Publications

In recent years, plasma medicine has developed rapidly as a new interdisciplinary discipline. However, the key mechanisms of interactions between cold atmospheric plasma (CAP) and biological tissue are still in the exploration stage. In this study, by introducing the reactive molecular dynamics (MD) simulation, the capsid protein (CA) molecule of HIV was selected as the model to investigate the reaction process upon impact by reactive oxygen species (ROS) from CAP and protein molecules at the atomic level.

View Article and Find Full Text PDF

Effect of Ga Doping on the Stability and Optoelectronic Properties of ZnSnO Thin Film Transistor.

Micromachines (Basel)

November 2024

Key Laboratory of Architectural Cold Climate Energy Management, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.

The electrical, stability and optoelectronic properties of GZTO TFTs with different Ga doping concentrations were investigated. Active layers were prepared by co-sputtering GaO and ZTO targets with different sputtering powers. The experimental results show that the surface of GZTO films is smooth, which is favorable for stability.

View Article and Find Full Text PDF

Liver diseases have become widespread especially due to various factors of modern life. Although the effect of N-acetyl-L-cysteine (NAC) is investigated in the recovery of liver damage, gas plasma therapy can be identified as a promising candidate. Our study aimed to enhance the effectiveness of ineffective doses of NAC in stopping CCl-induced hepatotoxicity in rats by physical cold plasma.

View Article and Find Full Text PDF

This study evaluated the effect of wheat germ oil (WGO), Bacillus subtilis, and their combination on growth performance, immune response, nutrient digestibility, intestinal microbial, oxidative status, and gene expression in heat-stressed broilers. Four hundred one-day-old male Ross 308 broilers were distributed into five pens (20 birds/pen) in four experimental groups: a control (CON) without additives, WGO group fed diet with WGO at 200 mg.kg, BS group fed diet with B.

View Article and Find Full Text PDF

We apply the trajectory formulation to analyze the anomalous dynamics of cold atoms in an optical lattice. The phase space probability density function of cold atoms, their dynamics, and the mechanism of dynamic evolution from an initial Gaussian distribution to a power-law distribution are analyzed. The results of the trajectory formulation are in good agreement with the previously reported experimental results for the exponent of position variance for a long time and the position-momentum correlation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!