As one of the directions of optical levitation technology, the mass measurement of micro-nano particles has always been a research hotspot in extremely weak mechanical measurements. When nanoscale particles are trapped in an optical trap, parameters such as density, diameter, and shape are unknown. Here we propose what we believe to be a new method to measure mass by fitting particle motion information to the Maxwell speed distribution law, with an accuracy better than 7% at 10 mbar. This method has the characteristics of requiring no external driving force, no precise natural frequency, no prior information such as density, and non-destructive testing within the medium vacuum range. With the increasing iterations, the uncertainty of mass measurement is reduced, and the accuracy of mass measurement of levitated particles is verified under multiple air pressures. It provides what we believe is a new method for the future non-destructive testing of nanoscale particles, and provides an apparently new way for the sensing measurement and metrology application fields of levitation dynamics systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.525371DOI Listing

Publication Analysis

Top Keywords

mass measurement
16
medium vacuum
8
maxwell speed
8
speed distribution
8
distribution law
8
nanoscale particles
8
non-destructive testing
8
mass
5
measurement medium
4
vacuum optically
4

Similar Publications

Background: Cervical cancer screening program in Uganda is opportunistic and focuses mainly on women aged 25-49 years. Female sex workers (FSWs) are at increased risk of developing invasive cervical cancer. There is limited data regarding the uptake and acceptability of cervical cancer screening among FSWs in Uganda.

View Article and Find Full Text PDF

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Objective: To clarify the screening behavior and influencing factors of females with breast cancer and cervical cancer in suburban areas and to provide a scientific basis for the subsequent implementation of targeted health education, intervention measures and the formulation of relevant policies.

Methods: This study used a multi-stage stratified random sampling method to select 4, 000 women in urban and rural areas of Beijing to analyze their behavior, basic situation, and influencing factors regarding cervical and breast cancer screening.

Results: The sample size of the final included valid analysis was 3861 people, and the screening rate was 27.

View Article and Find Full Text PDF

Leucine has gained recognition as an athletic dietary supplement in recent years due to its various benefits; however, the underlying molecular mechanisms remain unclear. In this study, 20 basketball players were recruited and randomly assigned to two groups. Baseline exercise performance-assessed through a 282-foot sprint, free throws, three-point field goals, and self-rated practice assessments-was measured prior to leucine supplementation.

View Article and Find Full Text PDF

Objectives: To evaluate the value of ultrasound (US) and shear wave velocity (SWV) to assess muscle in postmenopausal women with osteosarcopenia (OSP).

Methods: This study included 145 postmenopausal women, comprising 115 osteopenia/osteoporosis participants without sarcopenia (OP alone) and 30 OSP participants. All received the evaluation of bone mineral density (BMD), appendicular skeletal muscle mass index (ASMI), handgrip strength, calf circumference, 6-meter walking speed, and 5-time chair stand test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!