A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast reconstruction of laser beam near-field and focal spot profiles using deep neural network and numerical propagation. | LitMetric

AI Article Synopsis

  • Inertial confinement fusion (ICF) experiments require accurate measurements of laser beam parameters, specifically near-field and focal spot distributions, to evaluate beam quality.
  • Traditional iterative phase retrieval methods for laser beam reconstruction are limited by their heavy computational demands, leading to inefficiencies.
  • The proposed solution is an online method using deep neural networks and coherent modulation imaging (CMI) to quickly reconstruct the laser's near-field distribution from a single defocused pattern, making the process faster and more efficient.

Article Abstract

Inertial confinement fusion (ICF) experiments demand precise knowledge of laser beam parameters on high-power laser facilities. Among these parameters, near-field and focal spot distributions are crucial for characterizing laser beam quality. While iterative phase retrieval shows promise for laser beam reconstruction, its utility is hindered by extensive iterative calculations. To address this limitation, we propose an online laser beam reconstruction method based on deep neural network. In this method, we utilize coherent modulation imaging (CMI) to obtain labels for training the neural network. The neural network reconstructs the complex near-field distribution, including amplitude and phase, directly from a defocused diffraction pattern without iteration. Subsequently, the focal spot distribution is obtained by propagating the established complex near-field distribution to the far-field. Proof-of-principle experiments validate the feasibility of our proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.510088DOI Listing

Publication Analysis

Top Keywords

laser beam
20
neural network
16
focal spot
12
near-field focal
8
deep neural
8
beam reconstruction
8
complex near-field
8
near-field distribution
8
laser
6
beam
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!