We report on a high-power and narrow-linewidth nanosecond pulsed intracavity crystalline Raman laser at 1.7 µm. Driven by an acousto-optically Q-switched 1314 nm two-crystal Nd:YLF laser, the highly efficient cascaded YVO Raman laser at 1715nm was obtained within the well-designed L-shaped resonator. Thanks to the absence of spatial hole burning in the stimulated Raman scattering process, significant spectral purification of second-Stokes radiation was observed by incorporating a fused silica etalon in the high-Q fundamental cavity. Under the repetition rate of 4 kHz, the highest average output power for single longitudinal mode operation was up to 2.2 W with the aid of precision vibration isolation and precision temperature controlling, corresponding to the pulse duration of ∼2.8 ns and the spectral linewidth of ∼330 MHz. Further increasing the launched pump power, the second-Stokes laser tended toward be always multimode, and the maximum average output power amounted to 4.8 W with the peak power of ∼0.8 MW and the spectral linewidth of ∼0.08 nm. The second-Stokes emission was near diffraction limited with M < 1.4 across the whole pump power range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.527203 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India.
The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia.
Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Zentrum für Rieskrater und Impaktforschung, Nördlingen, Germany.
In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China. Electronic address:
Non-invasive glucose monitoring represents a significant advancement in diabetes management and treatment as non-painful alternatives than finger-sticks tests. After developing an integrated Raman spectral system with a 785 nm laser, this study systematically explores the application of in vivo Raman spectroscopy for quantitative, noninvasive glucose monitoring. In addition to observing characteristic glucose spectral information from a mouse model, a strong spectral correlation was also recognized with the blood glucose concentration.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States.
Highly energetic boron (B) particles embedded in hydroxyl-terminated polybutadiene (HTPB) thermosetting polymers represent stable solid-state fuel. Laser-heating of levitated B/HTPB and pure HTPB particles in a controlled atmosphere revealed spontaneous ignition of B/HTPB in air, allowing for examination of the exclusive roles of boron. These ignition events are probed via simultaneous spectroscopic diagnostics: Raman and infrared spectroscopy, temporally resolved high-speed optical and infrared cameras, and ultraviolet-visible (UV-vis) spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!