With the increasing capacity and complexity of optical fiber communication systems, both academic and industrial requirements for the essential tasks of transmission systems simulation, digital signal processing (DSP) algorithms verification, system performance evaluation, and quality of transmission (QoT) optimization are becoming significantly important. However, due to the intricate and nonlinear nature of optical fiber communication systems, these tasks are generally implemented in a divide-and-conquer manner, which necessitates a profound level of expertise and proficiency in software programming from researchers or engineers. To lower this threshold and facilitate professional research easy-to-start, a GPT-based versatile research assistant named OptiComm-GPT is proposed for optical fiber communication systems, which flexibly and automatically performs system simulation, DSP algorithms verification, performance evaluation, and QoT optimization with only natural language. To enhance OptiComm-GPT's abilities for complex tasks in optical fiber communications and improve the accuracy of generated results, a domain information base containing rich domain knowledge, tools, and data as well as the comprehensive prompt engineering with well-crafted prompt elements, techniques, and examples is established and performs under a LangChain-based framework. The performance of OptiComm-GPT is evaluated in multiple simulation, verification, evaluation, and optimization tasks, and the generated results show that OptiComm-GPT can effectively comprehend the user's intent, accurately extract system parameters from the user's request, and intelligently invoke domain resources to solve these complex tasks simultaneously. Moreover, the statistical results, typical errors, and running time of OptiComm-GPT are also investigated to illustrate its practical reliability, potential limitations, and further improvements.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.522026DOI Listing

Publication Analysis

Top Keywords

optical fiber
20
fiber communication
16
communication systems
16
gpt-based versatile
8
versatile assistant
8
dsp algorithms
8
algorithms verification
8
performance evaluation
8
qot optimization
8
complex tasks
8

Similar Publications

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

Optical Fiber Displacement Sensors (OFDSs) provide several advantages over conventional sensors, including their compact size, flexibility, and immunity to electromagnetic interference. These features make OFDSs ideal for use in confined spaces, such as turbines, where direct laser access is impossible. A critical aspect of OFDS performance is the geometry of the fiber bundle, which influences key parameters such as sensitivity, range, and dead zones.

View Article and Find Full Text PDF

Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.

View Article and Find Full Text PDF

Using fiber optics as a tool for different kinds of geotechnical monitoring can be highly attractive and cost-effective when compared to conventional instruments, such as piezometers and inclinometers, among others. A single fiber optic cable may cover a larger monitoring area compared to conventional instrumentation and allows for monitoring more than one physical quantity with the same fiber optic cable. The literature provides several different examples of distributed fiber optic systems usage.

View Article and Find Full Text PDF

Water pipelines in water diversion projects can leak, leading to soil deformation and ground subsidence, necessitating research into soil deformation monitoring technology. This study conducted model tests to monitor soil deformation around leaking buried water pipelines using distributed fiber optic strain sensing (DFOSS) technology based on optical frequency domain reflectometry (OFDR). By arranging strain measurement fibers in a pipe-soil model, we investigated how leak location, leak size, pipe burial depth, and water flow velocity affect soil strain field monitoring results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!