In recent years, the development of holographic near-eye displays (HNED) has surpassed the progress of digital hologram recording systems, especially in terms of wide-angle viewing capabilities. Thus, there is capture-display parameters incompatibility, which makes it impossible to reconstruct recorded objects in wide-angle display. This paper presents a complete imaging chain extending the available content for wide-angle HNED of pupil and non-pupil configuration with narrow-angle digital holograms of real objects. To this end, a new framework based on the phase-space approach is proposed that includes a set of affine transformations required to account for all differences in capture-display cases. The developed method allows free manipulation of the geometry of reconstructed objects, including axial and lateral positioning and size scaling. At the same time, it has a low computational effort. The presented work is supported with non-paraxial formulas developed using the phase-space approach, enabling accurate tracing of the holographic signal, its reconstruction, and measuring appearing deformations. The applicability of the proposed hologram manipulation method is proven with experimental results of digital hologram reconstruction in wide-angle HNED.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.517911 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!