A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research on fine co-focus adjustment method for segmented solar telescope. | LitMetric

For segmented telescopes, achieving fine co-focus adjustment is essential for realizing co-phase adjustment and maintenance, which involves adjusting the millimeter-scale piston between segments to fall within the capture range of the co-phase detection system. CGST proposes using a SHWFS for piston detection during the co-focus adjustment stage. However, the residual piston after adjustment exceeds the capture range of the broadband PSF phasing algorithm( ± 30μm), and the multi-wavelength PSF algorithm requires even higher precision in co-focus adjustment. To improve the co-focus adjustment accuracy of CGST, a fine co-focus adjustment based on cross-calibration is proposed. This method utilizes a high-precision detector to calibrate and fit the measurements from the SHWFS, thereby reducing the impact of atmospheric turbulence and systematic errors on piston measurement accuracy during co-focus adjustment. Simulation results using CGST demonstrate that the proposed method significantly enhances adjustment accuracy compared to the SHWFS detection method. Additionally, the residual piston after fine co-focus adjustment using this method falls within the capture range of the multi-wavelength PSF algorithm. To verify the feasibility of this method, experiments were conducted on an 800mm ring segmented mirror system, successfully achieving fine co-focus adjustment where the remaining piston of all segments fell within ±15μm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.522000DOI Listing

Publication Analysis

Top Keywords

co-focus adjustment
36
fine co-focus
20
adjustment
12
capture range
12
adjustment method
8
achieving fine
8
co-focus
8
piston segments
8
residual piston
8
multi-wavelength psf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!