To address the problem of the time-sharing recording of dual-wavelength low-coherence holograms while avoiding the use of customized achromatic optical elements, a snapshot dual-wavelength digital holography with LED and laser hybrid illumination is proposed. In this method, the parallel phase-shifting method is firstly employed to suppress zero-order and twin-image noise, and to record a LED hologram with low speckle noise and full field of view. Secondly, another laser hologram with a different center wavelength affected by speckle noise is recorded simultaneously using the spatial multiplexing technique. Finally, dual-wavelength wrapped phase images are reconstructed from a spatial multiplexing hologram, and then are combined to achieve low-noise phase unwrapping utilizing the iterative algorithm. Simulation and optical experiments on a reflective step with a depth of 1.38µm demonstrate that the proposed method can achieve single-shot and large-range height measurements while maintaining low-noise and full-field imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.521437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!