We demonstrate an ultrasensitive optomechanical strain sensor based on a SiN membrane and a Fabry-Perot cavity, enabling the measurements of both static and dynamic strain by monitoring reflected light fluctuations using a single-frequency laser. The SiN membrane offers high-quality-factor mechanical resonances that are sensitive to minute strain fluctuations. The two-beam Fabry-Perot cavity is constructed to interrogate the motion state of the SiN membrane. A static strain resolution of 4.00 nɛ is achieved by measuring mechanical resonance frequency shifts of the SiN membrane. The best dynamic resolution is 4.47 pɛHz, which is close to that of the sensor using high-finesse cavity and optical frequency comb, overcoming the dependence of ultrasensitive strain sensors on narrow-linewidth laser and high-finesse cavity with frequency locking equipment. This work opens up a promising avenue for a new generation of ultrasensitive strain sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.515343DOI Listing

Publication Analysis

Top Keywords

sin membrane
16
ultrasensitive optomechanical
8
optomechanical strain
8
strain sensor
8
fabry-perot cavity
8
high-finesse cavity
8
ultrasensitive strain
8
strain sensors
8
strain
7
ultrasensitive
4

Similar Publications

Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics.

View Article and Find Full Text PDF

YTHDF3-mediated FLCN/cPLA2 axis improves cardiac fibrosis via suppressing lysosomal function.

Acta Pharmacol Sin

January 2025

Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.

Cardiac fibrosis characterized by aberrant activation of cardiac fibroblasts impairs cardiac contractile and diastolic functions, inducing the progression of the disease towards its terminal phase, resulting in the onset of heart failure. Therefore, the inhibition of cardiac fibrosis has become a promising treatment for cardiac diseases. The ovarian follicle-stimulating hormone folliculin (FLCN) plays a significant role in various biological processes, such as lysosome function, mitochondrial synthesis, angiogenesis, ciliogenesis and autophagy.

View Article and Find Full Text PDF

Extracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.

View Article and Find Full Text PDF

Azo-PMA nanopores of sub-20 nm length for unimolecular resolution of nucleic acids and proteins.

Talanta

April 2025

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:

Owing to the facile fabrication and surface modification, the cost-effective polymer nanopores are widely employed in unimolecular determination of biomacromolecules and selective sensing of small molecules, nanoparticles and biomarkers. However, the documented polymer nanochannels are generally microscale in length with low spatial resolution. We herein synthesized azobenzene side-chain polymer (Azo-PMA) and spin-coated on silicon nitride membrane to obtain a polymer film of nanoscale thickness for further nanopore generation via controlled dielectric breakdown (CDB) approach.

View Article and Find Full Text PDF

[Mechanism of Huangqin Decoction in repairing intestinal barrier of ulcerative colitis by regulating tryptophan metabolism and activating AhR].

Zhongguo Zhong Yao Za Zhi

October 2024

the First Dongguan Affiliated Hospital of Guangdong Medical University Dongguan 523710, China the Second Clinical Medical College, Guangdong Medical University Dongguan 523808, China.

This study aims to elucidate the mechanism of Huangqin Decoction(HQD) in treating ulcerative colitis(UC) by investigating the relationship between tryptophan metabolism and intestinal barriers. In the in vivo experiments, 3% dextran sulfate sodium(DSS) was used to induce a mouse model of acute colitis, with mesalazine as a positive control. The therapeutic effect of HQD on mice with UC was evaluated according to body weight, disease activity index(DAI), colon length, and pathological changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!