Device-independent quantum key distribution (DIQKD) aims at generating secret keys between distant parties without the parties trusting their devices. We investigate a proposal for performing fully photonic DIQKD, based on single photon sources and heralding measurements at a central station placed between the two parties. We derive conditions to attain non-zero secret-key rates in terms of the photon efficiency, indistinguishability and the second order autocorrelation function of the single-photon sources. Exploiting new results on the security bound of such protocols allows us to reduce the requirements on the physical parameters of the setup. Our analysis shows that in the considered schemes, key rates of several hundreds of secret bits per second are within reach at distances of several tens of kilometers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.497935DOI Listing

Publication Analysis

Top Keywords

device-independent quantum
8
quantum key
8
key distribution
8
distribution realistic
4
realistic single-photon
4
single-photon source
4
source implementations
4
implementations device-independent
4
distribution diqkd
4
diqkd aims
4

Similar Publications

One-sided device-independent random number generation through fiber channels.

Light Sci Appl

January 2025

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China.

Randomness is an essential resource and plays important roles in various applications ranging from cryptography to simulation of complex systems. Certified randomness from quantum process is ensured to have the element of privacy but usually relies on the device's behavior. To certify randomness without the characterization for device, it is crucial to realize the one-sided device-independent random number generation based on quantum steering, which guarantees security of randomness and relaxes the demands of one party's device.

View Article and Find Full Text PDF

Time-bin entangled Bell state generation and tomography on thin-film lithium niobate.

npj Quantum Inf

December 2024

ETH Zurich, Department of Physics, Institute for Quantum Electronics, Optical Nanomaterial Group, Auguste-Piccard-Hof, 1, 8093 Zurich, Switzerland.

Optical quantum communication technologies are making the prospect of unconditionally secure and efficient information transfer a reality. The possibility of generating and reliably detecting quantum states of light, with the further need of increasing the private data-rate is where most research efforts are focusing. The physical concept of entanglement is a solution guaranteeing the highest degree of security in device-independent schemes, yet its implementation and preservation over long communication links is hard to achieve.

View Article and Find Full Text PDF

High-capacity device-independent quantum secure direct communication based on hyper-encoding.

Fundam Res

July 2024

College of Electronic and Optical Engineering, & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Quantum secure direct communication (QSDC) can directly transmit secret messages through quantum channel without keys. Device-independent (DI) QSDC guarantees the message security relying only on the observation of the Bell-inequality violation, but not on any detailed description or trust of the devices' inner workings. Compared with conventional QSDC, DI-QSDC has relatively low secret message capacity.

View Article and Find Full Text PDF

Experimental Measurement-Device-Independent Quantum Conference Key Agreement.

Phys Rev Lett

November 2024

Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Article Synopsis
  • - Quantum networks facilitate secure communication by enabling tasks like Quantum Conference Key Agreement (QCKA), which allows multiple users to share secure keys.
  • - Traditional QCKA struggles with long-distance key distribution due to the delicate nature of Greenberger-Horne-Zeilinger (GHZ) states, but Measurement-Device-Independent QCKA (MDI-QCKA) offers a solution by improving security and reducing loopholes.
  • - Recent advancements in three-photon GHZ interference technology led to a successful MDI-QCKA experiment over 60 km, achieving a secret key rate of 45.5 bits/s and marking progress towards practical long-distance quantum communications.
View Article and Find Full Text PDF

Quantum Advantage: A Single Qubit's Experimental Edge in Classical Data Storage.

Phys Rev Lett

November 2024

Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China.

We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage. The advantage is established by considering a class of simple bipartite games played with the communication resource qubit and classical bit (c bit), respectively. Conventional wisdom, supported by the no-go theorems of Holevo and Frenkel-Weiner, suggests that such a quantum advantage is unattainable when the sender and receiver share randomness or classical correlations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!