AI Article Synopsis

  • Silicon nanowires show promise as materials for polarization-sensitive applications, demonstrating an anisotropic photocurrent ratio of 1.59 at 780 nm.
  • The metal-single silicon nanowire-metal photodetector exhibits impressive performance with a responsivity of 24.58 mA/W and a detectivity of 8.88 × 10 Jones at 980 nm.
  • The research highlights the potential for creating cost-effective and integrated on-chip optical chips due to the established silicon processing techniques.

Article Abstract

Silicon nanowire is a potential candidate to be used as polarization-sensitive material, but the relative mechanism of polarization response must be carried out. Herein, a sub-micron metal-single silicon nanowire-metal photodetector exhibits polarization-sensitive characteristics with an anisotropic photocurrent ratio of 1.59 at 780 nm, an excellent responsivity of 24.58 mA/W, and a high detectivity of 8.88 × 10 Jones at 980 nm. The underlying principle of optical anisotropy in silicon nanowire is attributed to resonance enhancement verified by polarizing light microscopy and simulation. Furthermore, Stokes parameter measurements and imaging are all demonstrated by detecting the characteristics of linearly polarized light and imaging the polarizer array, respectively. Given the maturity of silicon processing, the sub-micron linearly polarized light detection proposed in this study lays the groundwork for achieving highly integrated, simplified processes, and cost-effective on-chip polarization-sensitive optical chips in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.520500DOI Listing

Publication Analysis

Top Keywords

silicon nanowire
12
linearly polarized
8
polarized light
8
silicon
5
sub-micron pixel
4
polarization-sensitive
4
pixel polarization-sensitive
4
polarization-sensitive photodetector
4
photodetector based
4
based silicon
4

Similar Publications

The development of ion-sensitive field-effect transistor (ISFET) sensors based on silicon nanowires (SiNW) has recently seen significant progress, due to their many advantages such as compact size, low cost, robustness and real-time portability. However, little work has been done to predict the performance of SiNW-ISFET sensors. The present study focuses on predicting the performance of the silicon nanowire (SiNW)-based ISFET sensor using four machine learning techniques, namely multilayer perceptron (MLP), nonlinear regression (NLR), support vector regression (SVR) and extra tree regression (ETR).

View Article and Find Full Text PDF

A flexible 3D ordered SERS sensor for rapid and reliable detection of pesticide residues in fruits.

Chem Commun (Camb)

January 2025

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

We fabricated flexible, three-dimensional (3D) ordered silicon nanowire (SiNW) arrays decorated with high-density silver nanoparticles (AgNPs) for the sensitive and reproducible detection of pesticide residues. These sensors demonstrated a detection limit of 10 M for methyl parathion (MPT) on curved surfaces.

View Article and Find Full Text PDF

Conventional wearable flexible sensing systems typically comprise three components: a flexible substrate that contacts the skin, a signal processing module, and a signal output module. These components function relatively independently, resulting in a complex system that lacks sufficient integration. Therefore, developing an integrated wearable flexible sensing system by combining the flexible substrate, the signal processing module, and the signal output module not only enhances performance and comfort, but also reduces manufacturing costs and the risk of failure.

View Article and Find Full Text PDF

Hydrogen Production and Li-Ion Battery Performance with MoS-SiNWs-SWNTs@ZnONPs Nanocomposites.

Nanomaterials (Basel)

November 2024

Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m g.

View Article and Find Full Text PDF

Lead Catalyzed GaAs Nanowires Grown by Molecular Beam Epitaxy.

Nanomaterials (Basel)

November 2024

Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.

This study investigates the growth of gallium arsenide nanowires, using lead as a catalyst. Typically, nanowires are grown through the vapor-solid-liquid mechanism, where a key factor is the reduction in the nucleation barrier beneath the catalyst droplet. Arsenic exhibits limited solubility in conventional catalysts; however, this research explores an alternative scenario in which lead serves as a solvent for arsenic, while gallium and lead are immiscible liquids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!