A new interactive quantum zero-knowledge protocol for identity authentication implementable in currently available quantum cryptographic devices is proposed and demonstrated. The protocol design involves a verifier and a prover knowing a pre-shared secret, and the acceptance or rejection of the proof is determined by the quantum bit error rate. It has been implemented in modified Quantum Key Distribution devices executing two fundamental cases. In the first case, all players are honest, while in the second case, one of the users is a malicious player. We demonstrate an increase of the quantum bit error rate around 25 in the latter case compared to the case of honesty. The protocol has also been validated for distances from a back-to-back setup to more than 60 km between verifier and prover. The security and robustness of the protocol has been analysed, demonstrating its completeness, soundness and zero-knowledge properties.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.517754DOI Listing

Publication Analysis

Top Keywords

quantum zero-knowledge
8
verifier prover
8
quantum bit
8
bit error
8
error rate
8
quantum
6
experimental implementation
4
implementation quantum
4
zero-knowledge proof
4
proof user
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!