Tomography is widely used in medical imaging or industrial non-destructive testing applications. One costly and time consuming operation in any form of tomography is the process of data acquisition where a large number of measurements are made and collected data is used for image reconstruction. Data acquisition can slow down tomography to the point that the scanner cannot catch up with the speed of changes in the medium under test. By optimizing the information content of each measurement, we can reduce the number of measurements needed to achieve the target precision. Development of algorithms to optimize the information content of tomography measurements is the main goal of this article. Here, the dynamics of the medium and tomography measurements are formulated in the form of a Kalman estimation filter. A mathematical algorithm is developed to compute the optimal measurement matrix which minimizes the uncertainty left in the estimation of the distribution the tomography scanner is reconstructing. Results, as presented in the paper, show noticeable improvement is the quality of generated images when the medium is scanned by optimal measurements instead of traditional raster or random scanning protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.520196DOI Listing

Publication Analysis

Top Keywords

kalman estimation
8
estimation filter
8
data acquisition
8
number measurements
8
tomography measurements
8
tomography
7
measurements
5
illumination pattern
4
pattern optimization
4
optimization tomography
4

Similar Publications

Game-theoretic planning for multiplayer defense task with online objective function parameter estimation.

ISA Trans

December 2024

Department of Control Science and Engineering, Tongji University, Shanghai, 201804, China; National Key Laboratory of Autonomous Intelligent Unmanned Systems, Shanghai Research Institute for Intelligent Autonomous Systems, and Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, Tongji University, Shanghai 201210, China. Electronic address:

This work investigates a game-theoretic path planning algorithm with online objective function parameter estimation for a multiplayer intrusion-defense game, where the defenders aim to prevent intruders from entering the protected area. At first, an intruder is assigned to each defender to perform a one-to-one interception by solving an integer optimization problem. Then, the intrusion-defense game is formulated in a receding horizon manner by designing the objective function and constraints for the defenders and intruders, respectively.

View Article and Find Full Text PDF

A modified adaptive Kalman filter (AKF) algorithm is proposed to make underwater multi-target tracking with uncertain measurement noise reliable. By utilizing the proposed AKF algorithm with three core points, including an adaptive fading factor, measurement noise covariance adjustment, and an adaptive weighting factor, the unknown measurement noise and state vector can be estimated with good accuracy and robustness. The practical trial data verify this algorithm, and it has proven superior to all traditional algorithms in this Letter based on the results that it reduces the estimated position RMSEs by at least 10.

View Article and Find Full Text PDF

Online vibration state identification of multi-rigid-body system based on self-healing model.

Sci Rep

December 2024

School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.

The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.

View Article and Find Full Text PDF

The accident mortality rates are rapidly increasing due to driver inattention, and traffic accidents become a significant problem on a global scale. For this reason, advanced driver assistance systems (ADASs) are essential to enhance traffic safety measures. However, adverse environmental factors, weather, and light radiation affect the sensors' accuracy.

View Article and Find Full Text PDF

Distributed coordinated motion control of multiple UAVs oriented to optimization of air-ground relay network.

Sci Rep

December 2024

School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.

A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!