High-finesse microcavities offer a platform for compact, high-precision sensing by employing high-reflectivity, low-loss mirrors to create effective optical path lengths that are orders of magnitude larger than the device geometry. Here, we investigate the radiation hardness of Fabry-Pérot microcavities formed from dielectric mirrors deposited on the tips of optical fibers. The microcavities are irradiated under both conventional (∼ 0.1 Gy/s) and ultrahigh (FLASH, ∼ 20 Gy/s) radiotherapy dose rates. Within our measurement sensitivity of ∼ 40 ppm loss, we observe no degradation in the mirror absorption after irradiation with over 300 Gy accumulated dose. This result highlights the excellent radiation hardness of the dielectric mirrors forming the cavities, enabling new optics-based, real-time, in-vivo, tissue-equivalent radiation dosimeters with ∼ 10 micron spatial resolution (our motivation), as well as other applications in high-radiation environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.522332 | DOI Listing |
Appl Radiat Isot
December 2024
Bingöl University, Faculty of Arts and Science, Department of Physics, 12000, Bingöl, Türkiye.
In this study, the gamma radiation shielding properties of concrete samples reinforced with 10%, 20%, 30%, 40% and 50% of the cement weight of brass alloy were investigated. To test gamma shielding performance of the samples, mass and linear attenuation coefficients, half and tenth value layers, effective atomic number and radiation protection efficiency parameters were determined experimentally, theoretically and Monte Carlo simulations (GEANT4 and FLUKA). The studies were performed at 11 different gamma energies that range from 59.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Scientific and Technological Research Center, Duzce University, Duzce 81620, Türkiye.
Since their inception, plastics have become indispensable materials. However, plastics used for extended periods in industrial applications are prone to aging, which negatively impacts their material behavior and performance. To ensure the long-term usability of these materials, they must be tested in real-time, in-service environments to assess degradation.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Università degli Studi di Catania, Dipartimento di Fisica e Astronomia `Ettore Majorana', Via Santa Sofia 64, 95123 Catania, Italy.
For many synchrotron radiation experiments, it is critical to perform continuous, real-time monitoring of the X-ray flux for normalization and stabilization purposes. Traditional transmission-mode monitors included metal mesh foils and ionization chambers, which suffered from low signal stability and size constraints. Solid-state detectors are now considered superior alternatives for many applications, offering appealing features like compactness and signal stability.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Future Photovoltaic Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Acta Crystallogr B Struct Sci Cryst Eng Mater
December 2024
College of Science and General Studies, Physics Department, Alfaisal University, PO Box 50927, Riyadh 11513, Saudi Arabia.
We explored the pressure-induced structural phase transitions and elastic properties of AuMTe (M = Ga, In) using the full-potential linearized augmented plane wave method within the framework of density functional theory, applying both generalized gradient and local density approximations. Thermodynamic properties were further assessed through the quasi-harmonic model. We determined the transition pressures for the phase shift from the chalcopyrite structure to the NaCl rock-salt phase in both AuGaTe and AuInTe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!