This Lilliput article provides a literature overview on ecological effects of the plant microbiome with a focus on practical application in forestry, agriculture and urban greenspace under the spectre of climate change. After an overview of the mostly bacterial microbiome of the model plant Arabidopsis thaliana, worldwide data from forests reveal ecological differentiation with respect to major guilds of predominantly fungal plant root symbionts. The plant-microbiome association forms a new holobiont, an integrated unit for ecological adaptation and evolutionary selection. Researchers explored the impact of the microbiome on the capacity of plants to adapt to changing climate conditions. They investigated the impact of the microbiome in reforestation programs, after wildfire, drought, salination and pollution events in forestry, grasslands and agriculture. With increasing temperatures plant populations migrate to higher latitudes and higher altitudes. Ecological studies compared the dispersal capacity of plant seeds with that of soil microbes and the response of soil and root microbes to experimental heating of soils. These studies described a succession of microbiome associations and the kinetics of a release of stored soil carbon into the atmosphere enhancing global warming. Scientists explored the impact of synthetic microbial communities (SynComs) on rice productivity or tea quality; of whole soil addition in grassland restoration; or single fungal inoculation in maize fields. Meta-analyses of fungal inoculation showed overall a positive effect, but also a wide variation in effect sizes. Climate change will be particularly prominent in urban areas ("urban heat islands") where more than half of the world population is living. Urban landscape architecture will thus have an important impact on human health and studies started to explore the contribution of the microbiome from urban greenspace to ecosystem services.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164675 | PMC |
http://dx.doi.org/10.1111/1751-7915.14482 | DOI Listing |
Environ Res
January 2025
College of Urban and Environmental Sciences, Peking University, 5 Yiheyuan Road, Beijing, 100871, China. Electronic address:
J Environ Manage
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China. Electronic address:
As climate change and urbanization progress, the urban heat island issue will affect more people. Urban blue-green spaces can effectively mitigate the urban heat island effect, and their structure and morphology significantly impact the degree of mitigation. To identify the most effective blue-green space distribution for mitigating the heat island effect across different urban function zones (UFZ), we selected 14 landscape metrics of blue-green spaces in the main urban area of Nanjing.
View Article and Find Full Text PDFEcol Appl
January 2025
Division of Natural Resources, Park Operations Department, Cleveland Metroparks, Cleveland, Ohio, USA.
Human-caused conversion of natural habitat areas to developed land cover represents a major driver of habitat loss and fragmentation, leading to reorganization of biological communities. Although protected areas and urban greenspaces can preserve natural systems in fragmented landscapes, their efficacy has been stymied by the complexity and scale-dependency underlying biological communities. While migratory bird communities are easy to-study and particularly responsive to anthropogenic habitat alterations, prior studies have documented substantial variation in habitat sensitivity across species and migratory groups.
View Article and Find Full Text PDFJACC Adv
January 2025
Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
Background: Climate change is increasing the frequency of high heat and high humidity days. Whether these conditions can trigger ventricular arrhythmias [ventricular tachycardia/ventricular fibrillation, VT/VF] in susceptible persons is unknown.
Objectives: The purpose of this study was to determine the relationship between warm-season weather conditions and risk of VT/VF in individuals with pacemakers and defibrillators.
Environ Int
December 2024
School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA; Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, 145 Anam-ro, Anam-dong 3-ga, Seongbuk-gu, Seoul 02841, South Korea.
Biological and psychological theories suggest complex impacts of heat on aggression and violence. Most previous studies considered temporal intervals of months to years and assumed linear associations. Evidence is needed on daily impacts of temperature on crime, applying non-linear models across different locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!