Background: Inherited retinal dystrophies (IRDs) are a group of debilitating visual disorders characterized by the progressive degeneration of photoreceptors, which ultimately lead to blindness. Among the causes of this condition, mutations in the PCYT1A gene, which encodes the rate-limiting enzyme responsible for phosphatidylcholine (PC) de novo synthesis via the Kennedy pathway, have been identified. However, the precise mechanisms underlying the association between PCYT1A mutations and IRDs remain unclear. To address this knowledge gap, we focused on elucidating the functions of PCYT1A in the retina.
Results: We found that PCYT1A is highly expressed in Müller glial (MG) cells in the inner nuclear layer (INL) of the retina. Subsequently, we generated a retina-specific knockout mouse model in which the Pcyt1a gene was targeted (Pcyt1a-RKO or RKO mice) to investigate the molecular mechanisms underlying IRDs caused by PCYT1A mutations. Our findings revealed that the deletion of Pcyt1a resulted in retinal degenerative phenotypes, including reduced scotopic electroretinogram (ERG) responses and progressive degeneration of photoreceptor cells, accompanied by loss of cells in the INL. Furthermore, through proteomic and bioinformatic analyses, we identified dysregulated retinal fatty acid metabolism and activation of the ferroptosis signalling pathway in RKO mice. Importantly, we found that PCYT1A deficiency did not lead to an overall reduction in PC synthesis within the retina. Instead, this deficiency appeared to disrupt free fatty acid metabolism and ultimately trigger ferroptosis.
Conclusions: This study reveals a novel mechanism by which mutations in PCYT1A contribute to the development of IRDs, shedding light on the interplay between fatty acid metabolism and retinal degenerative diseases, and provides new insights into the treatment of IRDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165903 | PMC |
http://dx.doi.org/10.1186/s12915-024-01932-y | DOI Listing |
J Proteome Res
January 2025
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.
Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation.
View Article and Find Full Text PDFChem Biodivers
January 2025
Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.
View Article and Find Full Text PDFSci Adv
January 2025
Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.
View Article and Find Full Text PDFFood Funct
January 2025
Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.
View Article and Find Full Text PDFCurr Microbiol
January 2025
División Agroalimentaria, Universidad Tecnológica de la Selva, C.P. 29950, Ocosingo, Chiapas, Mexico.
In the present study, the nematicidal and fungicidal activity of the biosurfactant (BS) produced by the strain Serratia ureilytica UTS was evaluated. The highest mortality of J2 juveniles of the nematode Nacobbus aberrans was 92.3% at a concentration of 30 mg/mL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!