Common bean provides diet rich in vitamins, fiber, minerals, and protein, which could contribute into food security of needy populations in many countries. Developing genotypes that associate favorable agronomic and grain quality traits in the common bean crop could increase the chances of adopting new cultivars black bean. In this context, the present study aimed at selection of superior black bean lines using multi-variate indexes, Smith-Hazel-index, and genotype by yield*trait biplot analysis. These trials were conducted in Campos dos Goytacazes - RJ, in 2020 and 2021. The experimental design used was randomized blocks, with 28 treatments and three replications. The experimental unit consisted of four rows 4.0 m long, spaced at 0.50 m apart, with a sowing density of 15 seeds per meter. The two central rows were used for the evaluations. The selection of superior genotypes was conducted using the multiple trait stability index (MTSI), multi-trait genotype-ideotype distance index (MGIDI), multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP), Smith-Hazel index, and Genotype by Yield*Trait Biplot (GYT). The multivariate indexes efficiently selected the best black bean genotypes, presenting desirable selection gains for most traits. The use of multivariate indexes and GYT enable the selection of early genotypes with higher grain yields. These lines G9, G13, G17, G23, and G27 were selected based on their performance for multiple traits closest to the ideotype and could be recommended as new varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163816 | PMC |
http://dx.doi.org/10.1186/s12870-024-05248-5 | DOI Listing |
Curr Res Food Sci
December 2024
Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
Some yellow-colored market classes of dry bean ( L.) are valued by consumers as an easy-to-digest, fast cooking alternative to darker colored red and black beans, which in comparison generally have longer cooking times and reduced iron bioavailability. There is evidence that the cooking time of yellow beans is linked to the dietary fiber content and may also contribute to nutrient digestibility and bioavailability.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland.
Expanded insect production represents a source of post-breeding residues (frass) that can potentially be used as a soil additive. These types of biofertilizers are carriers of recirculated nutrients, as well as organic matter. In the present study, we investigated whether the bean waste (BW) and pea waste (PW) in the form of crushed seeds and post-production leftovers, naturally rich in proteins, were suitable as a substrate for rearing black soldier fly (Hermetia illucens) larvae.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
The environmental impact of plastic waste is a growing global challenge, primarily due to non-biodegradable plastics from fossil resources that accumulate in ecosystems. Biodegradable polymers like polyhydroxyalkanoates (PHAs) offer a sustainable alternative. PHAs are microbial biopolymers produced by microorganisms using renewable substrates, including agro-industrial byproducts, making them eco-friendly and cost-effective.
View Article and Find Full Text PDFMolecules
December 2024
Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland.
(1) Background: Genistein is a naturally occurring flavonoid with a rich spectrum of biological activities, including plant-herbivore interactions. The aim of the study was to evaluate the effect of exogenous application of genistein on aphid behavior during probing in plant tissues. (2) Methods: , ssp.
View Article and Find Full Text PDFMolecules
November 2024
Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland.
Genistein and naringenin, plant phenolic compounds, are recognized for their health benefits and role in plant defense against herbivores. However, little research exists on how these compounds affect aphid feeding, particularly that of the black bean aphid ( Scopoli) (Hemiptera: Aphididae), a major pest. This study aimed to evaluate the effects of genistein and naringenin, applied in vitro at different concentrations, on the feeding behavior of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!