Background: Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein.

Results: Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds.

Conclusions: This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163699PMC
http://dx.doi.org/10.1186/s12863-024-01233-xDOI Listing

Publication Analysis

Top Keywords

il1b protein
16
il1b
11
prediction deleterious
8
non-synonymous snps
8
nssnps
8
deleterious nssnps
8
d128y f228s
8
structure function
8
protein
5
deleterious non-synonymous
4

Similar Publications

Malignant neoplasms arise within a region of chronic inflammation caused by tissue injuries. Inflammation is a key factor involved in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. Interleukin-1 (IL-1) plays critical functions in tumor development with influencing the tumor microenvironment and promoting cancer progression.

View Article and Find Full Text PDF

Purpose: Necrotizing fasciitis (NF) is a scarce but potentially life-threatening infection. However, no research has reported the cellular heterogeneity in patients with NF. We aim to investigate the change of cells from deep fascia in response to NF by single-cell RNA-seq.

View Article and Find Full Text PDF

6-PPDQ is a new type of environmental contaminant contained in tire rubber. No studies have been reported on the potential targets and mechanisms of action of 6-PPDQ on renal tissue damage. In the present study, we used CKD as an example to explore the potential targets and biological mechanisms of renal injury caused by 6-PPDQ using Network toxicology and animal experiments.

View Article and Find Full Text PDF

: Gegen Qinlian Decoction (GQD), is used for intestinal disorders like ulcerative colitis, irritable bowel syndrome, and colorectal cancer. But the precise mechanisms underlying its anti-inflammatory and anti-tumor effects are not fully elucidated. : Use network pharmacology to identify targets and pathways of GQD.

View Article and Find Full Text PDF

Interleukin (IL)-1β is a pro-inflammatory cytokine whose levels are increased in the brains of Alzheimer's disease (AD) patients. Despite the role of IL-1β in the pathology of AD, the fact that it is expressed at very low levels makes it a challenging cytokine to measure, hence limiting its potential use as a reliable biomarker. Moreover, being able to accurately and reliably measure the levels of IL-1 β in blood makes it possible to evaluate this cytokine as a potential biomarker of the inflammatory response in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!