Tomato yield can be increased by the application of optimum water and fertilizer. A field experiment was conducted in Efratana Gidim district, North Shewa, Amhara, Ethiopia, during 2019 and 2020. The objective was to determine the nitrogen (N) rate and irrigation regime for optimum tomato yield and water use efficiency (WUE). The experiment consisted of three-irrigation regimes (75% ETc (Evapotranspiration from the crop), 100% ETc, and 125% ETc) and four nitrogen (N) rates (control; i.e. without N application, 46 kg N ha, 92 kg N ha, and 138 kg N ha). The treatments were laid out in a split-plot design with four replications. The Irrigation regime were assigned to the main plot, while the N rate were assigned to the subplot. Data on growth, yield, and yield-related traits of tomatoes, include; plant height, number of fruit clusters per plant, fruit length, fruit diameter, number of marketable fruits, number of un-marketable fruits, the total number of fruits, marketable fruit yield, un-marketable fruit yield, total yield were collected. The data were subjected to analysis of variance using R studio. The results indicated that the experimental site had low total N content, and the application of N fertilizer significantly improved tomato yield. Increasing irrigation depth also significantly increased tomato yield. The result indicated that the highest mean marketable fruit yield (35,903 kg ha) was obtained from the combined application of 125% ETc with 92 kg N ha, while the lowest (13,655 kg ha) marketable fruit yield was obtained from 75% ETc with 92 kg N ha. The analysis of variance showed that the highest (5.4 kg m) WUE recorded from 75% ETc with 46 kg N ha increased WUE by 77% (2.4 kg m) compared with the lowest (2.3 kg m) WUE recorded from 125% ETc with 0 kg N ha. The partial budget analysis also indicated that the highest net benefit (266,272 ETB (Ethiopian Birr) ha) and an acceptable marginal rate of return (1240%) for the invested capital was recorded from the combined application of 125% ETc with 92 kg N ha. Therefore, the application of 125% ETc with 92 kg N ha resulted in the highest net benefit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164937 | PMC |
http://dx.doi.org/10.1038/s41598-024-62884-5 | DOI Listing |
Chem Biodivers
January 2025
Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.
Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.
View Article and Find Full Text PDFHeliyon
January 2025
Water Resources Research Center, Arba Minch Water Technology Institute, Arba Minch University, Arba Minch, Ethiopia.
This study investigates the integrative effects of irrigation water management allowable depletion (MAD), furrow irrigation methods (FIM), and nitrogen fertilizer application rate (NFAR) on tomato yield components. These yield components include marketable, unmarketable, and total yield. Additionally, the study examines crop agronomy components such as plant height, number of branches, and root depth in semi-arid Southern Ethiopia.
View Article and Find Full Text PDFFood Chem X
January 2025
Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands.
The ambition to utilize agricultural by-products has spotlighted tomato leaves as a promising source for plant-based proteins. High-yielding protein extractability is key for its industrial use, but previous studies reported decreased protein extractability at later stages of plant development. This study investigated the underlying factors in protein extractability through a comprehensive proteomics analysis across four plant developmental stages (vegetative, flowering, fruit-forming, mature-fruit).
View Article and Find Full Text PDFFood Chem
January 2025
Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland. Electronic address:
Waste produced during cultivation of edible plants can be a valuable source of bioactive molecules. Herein, we present the valorization of tomato leaves to obtain biologically active extracts. Deep eutectic solvents (DESs), composed of natural ingredients, were applied as extracting solvents.
View Article and Find Full Text PDFTalanta
January 2025
Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Av. Agustí Escardino 7, Paterna, 46980, Valencia, Spain. Electronic address:
The analysis of chemical xenobiotics in human, food, and environmental samples has become a global priority. Consequently, both public and private laboratories require rapid, cost-effective analytical methods for quality and safety control. Fluopicolide, a fungicide used to combat plant diseases, poses potential toxicological risks to humans and animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!