AI Article Synopsis

  • - Brown macroalgae produce fucoidans, which are sulfated polysaccharides that help with carbon dioxide sequestration and have potential uses in biotech and medicine, but their structural diversity complicates their application.
  • - The study uses MALDI mass spectrometry alongside biocatalysis to demonstrate that enzymes can create defined oligosaccharide structures from raw macroalgal biomass, showcasing a versatile approach applicable across multiple algae species.
  • - The research establishes that this method, utilizing both MALDI-TOF/TOF and AP-MALDI-Orbitrap technologies, allows for efficient extraction and high-throughput evaluation of fucoidan samples, facilitating better understanding and utilization of these compounds.

Article Abstract

Brown macroalgae synthesize large amounts of fucoidans, sulfated fucose-containing polysaccharides, in the ocean. Fucoidans are of importance for their recently discovered contribution to marine carbon dioxide sequestration and due to their potential applications in biotechnology and biomedicine. However, fucoidans have high intra- and intermolecular diversity that challenges assignment of structure to biological function and the development of applications. Fucoidan-active enzymes may be used to simplify this diversity by producing defined oligosaccharides more applicable for structural refinement, characterization, and structure to function assignment for example via bioassays. In this study, we combined MALDI mass spectrometry with biocatalysis to show that the endo-fucoidanases P5AFcnA and Wv323 can produce defined oligosaccharide structures directly from unrefined macroalgal biomass. P5AFcnA released oligosaccharides from seven commercial fucoidan extracts in addition to unrefined biomass of three macroalgae species indicating a broadly applicable approach reproducible across 10 species. Both MALDI-TOF/TOF and AP-MALDI-Orbitrap systems were used, demonstrating that the approach is not instrument-specific and exploiting their combined high-throughput and high-resolution capabilities. Overall, the combination of MALDI-MS and endo-fucoidanase assays offers high-throughput evaluation of fucoidan samples and also enables extraction of defined oligosaccharides of known structure from unrefined seaweed biomass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122317DOI Listing

Publication Analysis

Top Keywords

defined oligosaccharides
8
application maldi-ms
4
maldi-ms characterization
4
characterization fucoidan
4
fucoidan hydrolysates
4
hydrolysates screening
4
screening endo-fucoidanase
4
endo-fucoidanase activity
4
activity brown
4
brown macroalgae
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!