Evaluation of extruded starch foam for glucose-supplying biomaterials.

Carbohydr Polym

INRAE, UR 1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France. Electronic address:

Published: September 2024

The survival rate of mesenchymal stem cells (MSC), a crucial factor in tissue engineering, is highly dependent on glucose supply. The purpose of this paper is to study the potential of starch foams as glucose suppliers. It is investigated through in vitro hydrolysis by amyloglucosidase in conditions that respect physiological constraints (37 °C and pH 7.4), including a duration of 21 days, and no stirring. Nine extruded starch foams with amylose contents ranging from 0 to 74 %, with various cell wall thicknesses (50 to 300 μm), and different crystallinities (0-30 %) were hydrolysed. These kinetics were fitted by a model which shows that the maximum rate of hydrolysis varies from 7 to 100 %, and which allows the rate of hydrolysis at 21 days to be calculated precisely. The results reveal the major role of amylose in glucose delivery kinetics, and the secondary roles of crystallinity and cell wall thickness of the foams. Additional hydrolysis of starch films revealed that thickness positively influences the amylose chain reorganisation during hydrolysis, which, in slows down and limits glucose delivery. A simple glucose delivery kinetics analysis procedure is proposed to select samples for testing as MSC glucose suppliers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122319DOI Listing

Publication Analysis

Top Keywords

glucose delivery
12
extruded starch
8
starch foams
8
glucose suppliers
8
cell wall
8
rate hydrolysis
8
delivery kinetics
8
glucose
6
hydrolysis
5
evaluation extruded
4

Similar Publications

Background The incidence of pregnancy-associated diabetes has increased in recent decades, leading to neonatal adverse outcomes like metabolic and hematologic disorders, respiratory distress, cardiac disorders, and neurologic impairment. Macrosomia, a common consequence of diabetes, is influenced by maternal blood glucose levels, impacting adverse neonatal outcomes. Aim The current study aimed to assess the neonatal and maternal outcomes of the infants of diabetic mothers.

View Article and Find Full Text PDF

Diabetes mellitus, characterized by high blood glucose due to inadequate insulin action, comprises two main types: type 1, an autoimmune disease, and type 2, marked by insulin resistance. This review provides a comprehensive overview of diabetes management and treatment advancements. Effective diabetes management includes maintaining blood glucose levels within normal ranges and monitoring HbA1c, a marker reflecting average glucose levels over the past few months.

View Article and Find Full Text PDF

The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics.

View Article and Find Full Text PDF

Background: Lower maternal insulin sensitivity during pregnancy is associated with greater fetal adiposity. Physical activity can improve insulin sensitivity, but it is not known if physical behaviours influence the known association of maternal insulin sensitivity with offspring adiposity. This study aimed to investigate the moderating impact of physical behaviours on this association.

View Article and Find Full Text PDF

Biomimetic calcium-chelation nanoparticles reprogram tumor metabolism to enhance antitumor immunity.

J Control Release

January 2025

NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China. Electronic address:

Metabolic reprogramming within the tumor microenvironment poses a significant obstacle to the therapeutic efficacy of antitumor immunity. Here, inspired by the diverse programme of cholesterol metabolism between tumor and immune cells, a biocompatible carboxy-modified cyclodextrin carrier equipped with a biomimetic surface was developed to encapsulate FX11 and Avasimibe (RM-CDC@FX11&Ava) for synergistic antitumor metabolic therapy and immunotherapy. Through the manipulation of calcium levels using poly-carboxylic compounds to initiate cholesterol biosynthesis, RM-CDC@FX11&Ava dynamically regulates glycolysis and blocks cholesterol esterification to navigate metabolic reprogramming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!