Glioblastoma is a malignant brain tumor with poor prognosis. Though several dysregulated pathways were found to mediate the tumor progression, hyperactivation of RAS-RAF-ERK pathway, enhanced glycolysis and SKP2 are associated with several glioblastomas. Recent findings on the role of USP10 in the transition from pro-neural to mesenchymal subtype of glioblastoma and, USP13 in the stabilization of RAF1 in mouse embryonic stem cells prompted us to examine their role in the mechanisms mediating the progression of glioblastoma. In the present study, we have examined the role of spautin-1, a pharmacological inhibitor of USP10 and USP13 in the mechanisms mediating glioblastoma. Our results indicate that spautin-1 as well as knockdown of its downstream targets, USP10 and USP13, reduced the proliferation and migration of glioblastoma cells. Also, spautin-1 mediated inhibition of RAF-ERK pathway or inhibition of RAF1 and MEK1 per se reduced the glycolytic function via PKM2/Glut-1 and inhibited the progression of glioblastoma. Further, the protooncogene, SKP2, which was shown to be a direct target of USP10 /USP13 was also reduced by spautin-1. While inhibition of SKP2 enhanced its downstream target p21, no apparent changes in the RAF-ERK levels or glycolytic function were evident. Also, inhibition of MEK1 did not affect SKP2 levels, indicating that these two pathways act independent of each other. Overall, our findings indicate that spautin-1 by virtue of its inhibitory effects on USP10/13 counteracts RAS-RAF-ERK mediated glycolysis and SKP2 that are critical in the progression of glioblastoma. Hence, further preclinical validation is warranted for taking the present observations forward.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2024.167291 | DOI Listing |
Life Med
December 2023
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Glioma stem cells (GSCs) in the hypoxic niches contribute to tumor initiation, progression, and recurrence in glioblastoma (GBM). Metabolic pathways are altered in GSCs under hypoxia, but the mechanism underlying the altered one-carbon metabolism in GSCs by hypoxia is largely unknown. Here, we report that hypoxia induces down-regulation of DHFR as well as up-regulation of MAT2A in GBM tumorsphere cells, and confers them the ability of cell proliferation that is independent of exogenous folate.
View Article and Find Full Text PDFFront Oncol
January 2025
Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neuro-Oncology, Columbia University Irving Medical Center, 710 W. 168th Street, New York, NY, 10032, USA.
Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAF, found in 1-2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ);
Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.
View Article and Find Full Text PDFCureus
December 2024
Department of Neurosurgery, University of Tsukuba Hospital, Tsukuba, JPN.
Dysprosody affects rhythm and intonation in speech, resulting in the impairment of emotional or attitude expression, and usually presents as a negative symptom resulting in a monotonous tone. We herein report a rare case of recurrent glioblastoma (GBM) with dysprosody featuring sing-song speech. A 68-year-old man, formerly left-handed, with right temporal GBM underwent gross total resection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!