Nanomaterials have become increasingly important over time as research technology has enabled the progressively precise study of materials at the nanoscale. Developing an understanding of how nanomaterials are produced and tuned allows scientists to utilise their unique properties for a variety of applications, many of which are already incorporated into commercial products. Fullerenol nanoparticles C60(OH)n, 2 ≤ n ≤ 44 are fullerene derivatives and are produced synthetically. They have good biocompatibility, low toxicity and no immunological reactivity. In addition, their nanometre size, large surface area to volume ratio, ability to penetrate cell membranes, adaptable surface that can be easily modified with different functional groups, drug release, high physical stability in biological media, ability to remove free radicals, magnetic and optical properties make them desirable candidates for various applications. This review comprehensively summarises the various applications of fullerenol nanoparticles in different scientific fields such as nanobiomedicine, including antibacterial and antiviral agents, and provides an overview of their use in agriculture and biosensor technology. Recommendations are also made for future research that would further elucidate the mechanisms of fullerenols actions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.124313 | DOI Listing |
Sci Rep
December 2024
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
Introduction And Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the nasal cavity, penetrates the nasal epithelial cells through the interaction of its spike protein with the host cell receptor angiotensin-converting enzyme 2 (ACE2) and then triggers a cytokine storm. We aimed to assess the biocompatibility of fullerenol nanoparticles C(OH) and ectoine, and to document their effect on the protection of primary human nasal epithelial cells (HNEpCs) against the effects of interaction with the fragment of virus - spike protein. This preliminary research is the first step towards the construction of a intranasal medical device with a protective, mechanical function against SARS-CoV-2 similar to that of personal protective equipment (eg masks).
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Acute kidney injury (AKI) is characterized by rapid and significant deterioration of renal function over a short duration with high mortality. However, the intricate pathophysiological mechanisms underlying AKI have hindered the development of effective therapeutic strategies. Recent research has highlighted the crucial role of ferroptosis in the pathogenesis of AKI and has identified it as a promising therapeutic target.
View Article and Find Full Text PDFActa Pharm
September 2024
Faculty of Pharmacy, Chair of Pharmaceutical Biology, University of Ljubljana, 1000 Ljubljana, Slovenia.
A new micellar electrokinetic capillary chromatographic (MEKC) method has been developed and optimized for simultaneous quantitation of doxorubicin (Dox) and fullerenol (Frl) in rat serum. The separation was carried out in a capillary (48.5-40 cm to the detector - 50 µm id fused-silica capillary with bubble cell, 150 µm) at an applied voltage of 25 kV and temperature of 25 °C.
View Article and Find Full Text PDFMolecules
August 2024
College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China.
Objective: The aim of this study was to optimize the formulation of a C60-modified self-microemulsifying drug delivery system loaded with triptolide (C60-SMEDDS/TP) and evaluate the cytoprotective effect of the C60-SMEDDS/TP on normal human cells.
Results: The C60-SMEDDS/TP exhibited rapid emulsification, an optimal particle size distribution of 50 ± 0.19 nm (PDI 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!