Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session8eibjfmadva0jr2iii71j7o4kfo6fa6b): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Wheat is the predominant crop worldwide, contributing approximately 20% of protein and calories to the human diet. However, the yield potential of wheat faces limitations due to pests, diseases, and abiotic stresses. Although conventional breeding has improved desirable traits, the use of modern transgenesis technologies has been limited in wheat in comparison to other crops such as maize and soybean. Recent advances in wheat gene cloning and transformation technology now enable the development of a super wheat consistent with the One Health goals of sustainability, food security, and environmental stewardship. This variety combines traits to enhance pest and disease resistance, elevate grain nutritional value, and improve resilience to climate change. In this review, we explore ways to leverage current technologies to combine and transform useful traits into wheat. We also address the requirements of breeders and legal considerations such as patents and regulatory issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-phyto-121423-042128 | DOI Listing |
G3 (Bethesda)
March 2025
Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA.
Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and a valuable genetic resource for wheat improvement. Several reference-quality genome sequences have been reported for Ae. tauschii accession AL8/78.
View Article and Find Full Text PDFMol Breed
February 2025
State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018 China.
Unlabelled: Heterosis, a key technology in modern commercial maize breeding, is limited by the narrow genetic base which hinders breeders from developing superior hybrid varieties. By integrating big data and functional genomics technologies, it becomes possible to create new super maize inbred lines that resemble hybrid varieties through the aggregation of multiple QTL parental advantage loci. In this study, we utilized a combination of resequencing and field selfing selection methods to develop three pyramiding QTL lines (PQLs) (PQL4, 6, and 7), each containing 15, 12, and 12 QTL loci respectively.
View Article and Find Full Text PDFFood Chem
May 2025
Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China. Electronic address:
Deoxynivalenol (DON) is one of the most harmful mycotoxins that poses great health threats to human and animals. Herein, a simple and sensitive magnetic beads-based fluorescent biosensor was successfully prepared for detection of DON in cereals. A stable double-stranded DNA (dsDNA, biotin-sDNA+FAM-cDNA/AP) was formed on the surface of streptavidin-coated magnetic beads (SMBs).
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, 528225, People's Republic of China; School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China. Electronic address:
The toughening coix seed oil (CSO) high internal phase Pickering emulsion (CSO-HIPES) and gel (CSO-HIPESG) comprised of carrageenan (CR)/super-deamidated-gluten (SDG) micro-particles (CR/SDG) were investigated via acid-heat induction. Results showed polysaccharide natural deep eutectic solvent (P-NADES) by citric acid-glucose-carrageenan ((CGCR), molar ratio at 1:1:0.035) was the crucial for the preparation of SDG (deamidation degree, 99.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemistry Department, Science Faculty, Ain Shams University, Cairo 11566, Egypt. Electronic address:
Innovative super-hydrophilic/superoleophobic eco-friendly sponge composite is fabricated by integrating chemically-modified cellulose with lignin derived from bio-waste wheat-straw. Such combination is implemented by modifying cellulose with thiadiazole-amide and integrating it with lignin using microwave/ultrasonic-powered in-liquid plasma. Physicochemical characteristics of sponge-composite (WL-TDAC) are studied using FTIR, N-physisorption, DLS, SEM, chemical-computational analysis, and surface wettability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!