Electrospun polymeric nanofibers are essential in various fields for various applications because of their unique properties. Their features are similar to extracellular matrices, which suggests them for applications in healthcare fields, such as antimicrobials, tissue engineering, drug delivery, wound healing, bone regeneration, and biosensors. This review focuses on the synthesis of electrospun polymeric nanofibers, their surface modification, and their biomedical applications. Nanofibers can be fabricated from both natural and synthetic polymers and their composites. Even though they mimic extracellular matrices, their surface features (physicochemical characteristics) are not always capable of fulfilling the purpose of the target application. Therefore, they need to be improved via surface modification techniques. Both needle-based and needleless electrospinning are thoroughly discussed. Various techniques and setups employed in each method are also reviewed. Furthermore, pre- and postspinning modification approaches for electrospun nanofibers, including instrument design and the modification features for targeted biomedical applications, are also extensively discussed. In this way, the remarkable potential of electrospun polymeric nanofibers can be highlighted to reveal future research directions in this dynamic field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.4c00307 | DOI Listing |
Polymers (Basel)
January 2025
Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.
Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan.
Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).
View Article and Find Full Text PDFMethodsX
June 2025
Technological Insitute of Sonora, Ciudad Obregon, Sonora MX-85000, Mexico.
Electrospinning can be used to prepare membranes with characteristics for biomedical application. In this work, the electrospinning conditions for the fabrication of membranes based on polymers extracted from natural sources such as chitosan and collagen were optimized (injection flow, injection volume, distance from the collector to the neddle, needle size and voltage). Specifically, four formulations were prepared with pure chitosan and mixtures of collagen (purified or hydrolyzed) and agarose.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
This study introduces a novel bilayer wound dressing that integrates a quaternized chitosan-polyacrylic acid (QCs-PAA) sponge as the top layer with electrospun nanofibers containing curcumin as the bottom layer. For the first time, QCs and PAA were combined in an 80:20 ratio through freeze-drying to form a porous sponge layer with ideal structural properties, including 83 ± 6 % porosity and pore diameters of 290 ± 12.5 μm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!