Two-dimensional materials provide a rich platform demonstrating quantum effects, and the process of electron-hole recombination occurring in them has significant applications in the fields of the photocatalytic and optoelectronic community. Here, we present nonadiabatic coupling-induced quantum coherence and quantum beats in Al-doped blue phosphorene. The work improves our understanding and utilization of nonadiabatic coupling in low-dimensional materials from a new perspective. In addition, our investigations provide meaningful guidance for manipulating quantum coherence in low-dimensional materials and promoting their novel optoelectronic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194825PMC
http://dx.doi.org/10.1021/acs.jpclett.4c01140DOI Listing

Publication Analysis

Top Keywords

quantum coherence
12
nonadiabatic coupling-induced
8
coupling-induced quantum
8
two-dimensional materials
8
low-dimensional materials
8
quantum
5
coherence two-dimensional
4
materials
4
materials two-dimensional
4
materials provide
4

Similar Publications

Phase transition in magic with random quantum circuits.

Nat Phys

January 2024

Joint Center for Quantum Information and Computer Science, University of Maryland and NIST, College Park, MD 20742.

Magic is a property of quantum states that enables universal fault-tolerant quantum computing using simple sets of gate operations. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards efficient and practical fault-tolerant computation. We observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic, which we characterize through analytic, numeric and experimental probes.

View Article and Find Full Text PDF

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.

View Article and Find Full Text PDF

Nuclear magnetic resonance is extremely attractive for operando studies of chemical reactors. However, the heterogeneous catalyst particles placed inside an NMR probe greatly affect the uniformity of the magnetic field. This problem is especially acute when studying heterogeneous hydrogenation processes using parahydrogen.

View Article and Find Full Text PDF

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!