Carbon-concentrating mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM (PCCM) of Chlamydomonas reinhardtii or carboxysome systems of cyanobacteria, are common in aquatic photosynthetic microbes, but in land plants appear only among the hornworts. To predict the likely efficiency of biophysical CCMs in C3 plants, we used spatially resolved reaction-diffusion models to predict rubisco saturation and light use efficiency. We found that the energy efficiency of adding individual CCM components to a C3 land plant is highly dependent on the permeability of lipid membranes to CO2, with values in the range reported in the literature that are higher than those used in previous modeling studies resulting in low light use efficiency. Adding a complete PCCM into the leaf cells of a C3 land plant was predicted to boost net CO2 fixation, but at higher energetic costs than those incurred by photorespiratory losses without a CCM. Two notable exceptions were when substomatal CO2 levels are as low as those found in land plants that already use biochemical CCMs and when gas exchange is limited, such as with hornworts, making the use of a biophysical CCM necessary to achieve net positive CO2 fixation under atmospheric CO2 levels. This provides an explanation for the uniqueness of hornworts' CCM among land plants and the evolution of pyrenoids multiple times.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444298PMC
http://dx.doi.org/10.1093/plphys/kiae324DOI Listing

Publication Analysis

Top Keywords

land plants
16
carbon-concentrating mechanisms
8
biophysical ccms
8
light efficiency
8
efficiency adding
8
land plant
8
co2 fixation
8
co2 levels
8
co2
7
land
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!