Assessing the Charge Carrier Dynamics at Hybrid Interfaces of Organic Photoanodes for Solar Fuels.

J Phys Chem Lett

Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland.

Published: June 2024

Organic semiconductors (OSCs) have emerged as promising active layers for photoanodes to drive photoelectrochemical (PEC) oxidation reactions. Interfacing an OSC with an inorganic electron transport layer (ETL) is key to enabling both high performance and stability. While spectroelectrochemical techniques have been established for the evaluation of inorganic interfaces, allowing rational optimization toward higher performances, a similar level of understanding for hybrid organic-inorganic interfaces remains elusive. To close this knowledge gap, we first perform a systematic parameter study (ETL thickness, potential dependency, and light intensity) on a state-of-the-art organic photoanode to establish factors determining the photoelectrochemical impedance spectroscopy (PEIS) response. Coupled with UV-Vis characterizations, key charge transfer processes are clearly assigned to the PEIS features.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01170DOI Listing

Publication Analysis

Top Keywords

assessing charge
4
charge carrier
4
carrier dynamics
4
dynamics hybrid
4
hybrid interfaces
4
interfaces organic
4
organic photoanodes
4
photoanodes solar
4
solar fuels
4
fuels organic
4

Similar Publications

: Cationic polymers were shown to assemble with negatively charged proteins yielding nanoparticles (NPs). Poly-diallyl-dimethyl-ammonium chloride (PDDA) combined with ovalbumin (OVA) yielded a stable colloidal dispersion (OVA/PDDA-NPs) eliciting significant anti-OVA immune response. Dendritic cells (DCs), as sentinels of foreign antigens, exert a crucial role in the antigen-specific immune response.

View Article and Find Full Text PDF

An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.

View Article and Find Full Text PDF

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate.

View Article and Find Full Text PDF

Ultrasound assisted complexation of soybean peptide aggregates and soluble soybean polysaccharide: pH optimization, structure characterization, and emulsifying behavior.

Food Res Int

February 2025

Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China. Electronic address:

This study aims to enhance the emulsifying properties of soybean peptide aggregates (SPA) by preparing SPA-soluble soybean polysaccharide (SSPS) composite particles at the assistance of ultrasound technique. The optimal pH for SPA and SSPS complexation was determined by measuring the charge and particle size of the composites. The effects of ultrasound power and duration on the physicochemical properties of the composite particles were assessed through measurements of particle size, zeta potential, contact angle, FTIR, and SEM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!