In this study, we examined the nanostructured molecular packing and orientations of poly[[,'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]--5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) films formed on water for the application of nanotechnology-based organic electronic devices. First, the nanoscale molecule-substrate interaction between the polymer and water was modulated by controlling the alkyl side chain length in NDI-based copolymers. Increasing alkyl side chain lengths induced a nanomorphological transition from face-on to edge-on orientation, confirmed by molecular dynamics simulations revealing nanostructural behavior. Second, the nanoscale intermolecular interactions of P(NDI2OD-T2) were controlled by varying the volume ratio of the high-boiling-point additive solvent in the binary solvent blends. As the additive solvent ratio increased, the nanostructured molecular orientation of the P(NDI2OD-T2) films on water changed remarkably from edge-on to bimodal with more face-on crystallites, thereby affecting charge transport. Our finding provides essential insights for precise nanoscale morphological control on water substrates, enabling the formation of high-performance polymer films for organic electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c01675 | DOI Listing |
Oncol Res
December 2024
School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, D02 YN77, Ireland.
Brain metastasis and primary glioblastoma multiforme represent the most common and lethal malignant brain tumors. Its median survival time is typically less than a year after diagnosis. One of the major challenges in treating these cancers is the efficiency of the transport of drugs to the central nervous system.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China.
Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility.
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.
Phthalocyanine derivative nanostructures are highly organized organometallic structures that exhibit two-dimensional polymeric phthalocyanine frameworks. We analyze phthalocyanine using the Zagreb-type indices, which offer important insights into the topological characteristics of the molecular structure. Furthermore, we use Pearson correlation analysis to examine the degree of relationship between various structural features and qualities.
View Article and Find Full Text PDFSci Rep
December 2024
College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!