A comprehensive analysis of aerosol characteristics over Saudi Arabia from 2005 to 2022, utilizing high-resolution satellite-based observations and reanalysis datasets, examining the distribution of aerosols and their subtypes across the three dimensions (temporal, spatial, and altitude based) for March, April, and May. This study focuses on the analysis of parameters such as aerosol optical depth (AOD), angstrom exponent (AE), absorption aerosol optical depth (AAOD), and Ultraviolet Aerosol Index (UVAI), revealing significant spatial disparities, with elevated aerosol concentrations in the central and eastern regions and comparatively lower concentrations along the western coastal areas. In this study, the spatial patterns and temporal trends are analyzed through trajectory modeling. The study also investigates the composition of aerosols in various Saudi cities. Aerosols prevailing in a dozen Saudi Arabian cities were systematically categorized into six sub-types, considering their particle size and UV-absorbing properties. Notably, two major aerosol sub-types, absorbing coarse (AC) aerosols (UVAI > 0.25, AE < 0.70) treated as mineral dust and absorbing mixed (AM) aerosols (0.70 < AE < 1.25) along with neutral fine (NF) particles (- 0.5 < UVAI < 0.25, AE > 1.25) treated as urban, predominate across the Kingdom of Saudi Arabia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-33871-0 | DOI Listing |
Environ Int
December 2024
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain. Electronic address:
Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (b) and BrC (b) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
Biomass-burning organic aerosol(s) (BBOA) are rich in brown carbon, which significantly absorbs solar irradiation and potentially accelerates global warming. Despite its importance, the multiphase photochemistry of BBOA after light absorption remains poorly understood due to challenges in determining the oxidant concentrations and the reaction kinetics within aerosol particles. In this study, we explored the photochemical reactivity of BBOA particles in multiphase S(IV) oxidation to sulfate.
View Article and Find Full Text PDFJ Aerosol Med Pulm Drug Deliv
December 2024
Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA.
Aerosol delivery may be enhanced by utilizing an inspiration-synchronized nebulization mode, where nebulization occurs only during inspiration. This study aimed to compare aerosol delivery of albuterol via a prototype of an inspiration-synchronized vibrating mesh nebulizer (VMN) versus continuous VMN during invasive mechanical ventilation. A critical care ventilator equipped with a heated-wire circuit to deliver adult parameters was attached to an endotracheal tube (ETT), a collection filter, and a test lung.
View Article and Find Full Text PDFNew particle formation (NPF) in the tropical upper troposphere is a globally important source of atmospheric aerosols. It is known to occur over the Amazon basin, but the nucleation mechanism and chemical precursors have yet to be identified. Here we present comprehensive in situ aircraft measurements showing that extremely low-volatile oxidation products of isoprene, particularly certain organonitrates, drive NPF in the Amazonian upper troposphere.
View Article and Find Full Text PDFEnviron Int
December 2024
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain. Electronic address:
There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!