Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Great effort has been dedicated to the engineering of porous organic cages (POCs) in geometry and topology. Yet, harnessing these cage-like entities as premade building units to construct infinite cage-based superstructures remains elusive. In this study, we design a type of vertex-modified phosphine organic prism by a postfunctionalized approach and use it as a ditopic cage monomer to achieve an intercage supramolecular polymerization via the synergy of metal coordination and π-π dimerization. The resulting cage-by-cage polymers can further hierarchically organize into superstructures of diverse morphologies and dimensionalities, including 1D fibers, 2D lamellae, and 3D vesicles. Control over the cosolvents is capable of well regulating their structural hierarchies and self-assembled shapes. This would pave a way for the creation of cage-based supramolecular assemblies and nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.4c00317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!