Seebeck Coefficient of Ionic Conductors from Bayesian Regression Analysis.

J Chem Theory Comput

SISSA─Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy.

Published: July 2024

We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the probability distribution of the off-diagonal elements of a Wishart matrix, we develop a consistent and unbiased estimator for the Seebeck coefficient, whose statistical uncertainty can be arbitrarily reduced in the long-time limit. We assess the efficacy of our method by benchmarking it against extensive equilibrium molecular dynamics simulations conducted on molten CsF using empirical force fields. We then employ this procedure to calculate the Seebeck coefficient of molten NaCl, KCl, and LiCl using neural network force fields trained on ab initio data over a range of pressure-temperature conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00124DOI Listing

Publication Analysis

Top Keywords

seebeck coefficient
16
bayesian regression
8
regression analysis
8
equilibrium molecular
8
molecular dynamics
8
dynamics simulations
8
force fields
8
seebeck
4
coefficient ionic
4
ionic conductors
4

Similar Publications

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Semiconducting single-walled carbon nanotubes (SWCNTs) are significantly attractive for thermoelectric generators (TEGs), which convert thermal energy into electricity via the Seebeck effect. This is because the characteristics of semiconducting SWCNTs are perfectly suited for TEGs as self-contained power sources for sensors on the Internet of Things (IoT). However, the thermoelectric performances of the SWCNTs should be further improved by using the power sources.

View Article and Find Full Text PDF

Recently, ionic thermoelectric supercapacitors have gained attention because of their high open circuit voltages, even for ions that are redox inactive. As a source of open circuit voltage (electromotive force), an asymmetry in electric double layers developed by the adsorption of ions at the electrode surfaces kept at different temperatures has previously been proposed. As another source, the Eastman entropy of transfer, which is related to the Soret coefficient, has been considered.

View Article and Find Full Text PDF

The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.

View Article and Find Full Text PDF

Effect of High-Energy Electron Beam Irradiation on the Structure and Thermoelectric Properties of Polypyrrole.

Polymers (Basel)

December 2024

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

The effects of different doses (10-100 kGy) of electron beams on the molecular structure, microstructure, and thermoelectric properties of polypyrrole (PPy) under high-energy electron beam irradiation (10 MeV) were studied. The results showed that after electron beam irradiation, the conductivity of PPy increased slightly, but the Seebeck coefficient and power factor remained relatively stable. The structural analysis of FTIR, Raman spectroscopy, and X-ray diffraction indicated that the molecular structure of PPy was strongly stable, and its microstructure was only slightly affected by electron beam irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!