This paper reports the effect of a magnetic field on plasma parameters and surface structuring of the Mg alloy after laser irradiation. Femtosecond pulses of a Ti:sapphire laser system (800 nm, 35 fs, 1 KHz) are employed as the source of irradiation at various irradiances ranging from 0.011 / to 0.117 / to generate ablated Mg-alloy plasma. A transvers magnetic field (TMF) of strength 1.1 Tesla is employed to confine laser generated Mg plasma. All the measurements are performed with and without TMF. The two plasma parameters, i.e., excitation temperature ( ) and electron number density ( ) of Mg plasma, have been evaluated by laser-induced breakdown spectroscopy (LIBS) analysis. It is observed that the values of and of laser produced plasma (LPP) of the Mg alloy are higher in the presence of a magnetic field as compared to the field free case. Both show initially an increasing trend with increasing laser irradiance and after attaining their respective maxima a decreasing trend is observed with the further increase of irradiance. The magnetic confinement validity is confirmed by analytically evaluating thermal beta ( ), directional beta ( ), confinement radius ( ), and diffusion time ( ) for LPP of the Mg alloy. To correlate the LPP parameters of the Mg alloy with surface modifications a field emission scanning electron microscope (FE-SEM) analysis is performed. It was revealed that structures like laser-induced periodic surface structures (LIPSSs), agglomerates, islands, large sized bumps, along with channels and multiple ablative layers are observed. Distinct and well-defined surface structuring is observed in the presence of TMF as compared to the field free case. It is concluded that by applying an external magnetic field during laser irradiation, controlled material surface structuring is possible for fabrication of nanogratings and field emitters where spatial uniformity is critically important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.523804 | DOI Listing |
ACS Nano
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Magnetocaloric high-entropy alloys (HEAs) have recently garnered significant interest owing to their potential applications in magnetic refrigeration, offering a wide working temperature range and large refrigerant capacity. In this study, we thoroughly investigated the structural, magnetic, and magnetocaloric properties of equiatomic GdDyHoErTm HEAs. The as-cast alloy exhibits a single hexagonal phase, a randomly distributed grain orientation, and complex magnetism.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, P. R. China.
Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.
View Article and Find Full Text PDFJ Eat Disord
December 2024
Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
Eating disorders (EDs) are a group of debilitating mental illnesses characterized by maladaptive eating behaviors and severe cognitive-emotional dysfunction, directly affecting 1-3% of the population. Standard treatments are not effective in approximately one third of ED cases, representing the need for scientific advancement. There is emerging evidence for the safety and efficacy of psilocybin-assisted psychotherapy (PAP) to improve treatment outcomes in individuals with EDs.
View Article and Find Full Text PDFSci Rep
December 2024
LATMOS-IPSL-CNRS, 75252, Paris, France.
The ground-based solar telescope THEMIS performed several observations of Mercury's sodium exosphere in years 2011-2013, when the MESSENGER spacecraft was orbiting around the planet. Typical two-peak exospheric patterns were frequently identified. In previous studies, some specific cases of THEMIS Na two-peak observations were characterized and related to IMF conditions, during specific extreme cases, in the occasion of CME arrival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!