Conventional microscopes have a high spatial resolution and a low depth-of-field. Light field microscopes have a high depth-of-field but low spatial resolution. A new hybrid approach uses information from both systems to reconstruct a high-resolution light field [Appl. Opt.58, A142 (2019)APOPAI0003-693510.1364/AO.58.00A142]. The resolution of the resulting light field is said to be limited only by diffraction and the size of the pixels. In this paper, we evaluate this method. Using simulation data we compare the output of the hybrid reconstruction algorithm with its simulated ground truth. Our analyses reveal that the observed improvement in the light field quality is not a consequence of data fusion or incorporation of information from a conventional camera, but rather the results of an intermediate interpolation step within the light field itself. This suggests that the required information is already inherent to the light field. By employing the Richardson-Lucy Light Field Deconvolution algorithm, we demonstrate that existing algorithms have already utilized this information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.516573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!