We investigate terahertz time-domain spectroscopy using a low-noise dual-frequency-comb laser based on a single spatially multiplexed laser cavity. The laser cavity includes a reflective biprism, which enables generation of a pair of modelocked output pulse trains with slightly different repetition rates and highly correlated noise characteristics. These two pulse trains are used to generate the THz waves and detect them by equivalent time sampling. The laser is based on Yb:CALGO, operates at a nominal repetition rate of 1.18 GHz, and produces 110 mW per comb with 77 fs pulses around 1057 nm. We perform THz measurements with Fe-doped photoconductive antennas, operating these devices with gigahertz 1 µm lasers for the first time, to our knowledge, and obtain THz signal currents approximately as strong as those from reference measurements at 1.55 µm and 80 MHz. We investigate the influence of the laser's timing noise properties on THz measurements, showing that the laser's timing jitter is quantitatively explained by power-dependent shifts in center wavelength. We demonstrate reduction in noise by simple stabilization of the pump power and show up to 20 dB suppression in noise by the combination of shared pumping and shared cavity architecture. The laser's ultra-low-noise properties enable averaging of the THz waveform for repetition rate differences from 1 kHz to 22 kHz, resulting in a dynamic range of 55 dB when operating at 1 kHz and averaging for 2 s. We show that the obtained dynamic range is competitive and can be well explained by accounting for the measured optical delay range, integration time, as well as the measurement bandwidth dependence of the noise from transimpedance amplification. These results will help enable a new approach to high-resolution THz-TDS enabled by low-noise gigahertz dual-comb lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.522802DOI Listing

Publication Analysis

Top Keywords

dual-comb lasers
8
laser based
8
laser cavity
8
pulse trains
8
repetition rate
8
thz measurements
8
laser's timing
8
dynamic range
8
noise
6
thz
5

Similar Publications

Cantilever-enhanced dual-comb photoacoustic spectroscopy.

Photoacoustics

August 2024

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China.

Dual-comb photoacoustic spectroscopy (DC-PAS) advances spectral measurements by offering high-sensitivity and compact size in a wavelength-independent manner. Here, we present a novel cantilever-enhanced DC-PAS scheme, employing a high-sensitivity fiber-optic acoustic sensor based on an optical cantilever and a non-resonant photoacoustic cell (PAC) featuring a flat-response characteristic. The dual comb is down-converted to the audio frequency range, and the resulting multiheterodyne sound waves from the photoacoustic effect, are mapped into the response frequency region of the optical cantilever microphone.

View Article and Find Full Text PDF

We describe improved methods for locating the fixed point of an optical frequency comb. Two continuous-wave lasers are locked to a reference frequency comb and track the optical phase of a second comb-under-test (CUT) at two points separated by approximately 1.6 THz.

View Article and Find Full Text PDF
Article Synopsis
  • Mid-infrared optical sources are key for applications like gas sensing and metrology, utilizing molecular absorption in this spectral range.
  • Parametric frequency conversion methods, especially continuous-wave (CW)-seeded optical parametric generation (OPG), offer enhanced stability and performance for generating mid-infrared light.
  • The proposed femtosecond OPG system in periodically poled lithium niobate waveguides features a high quantum efficiency of 46.5% and is promising for compact mid-infrared combs, aiding in practical uses like environmental monitoring.
View Article and Find Full Text PDF

We demonstrate spatially resolved sensing by a novel approach that combines an infrared camera and a simplified dual-comb illumination arrangement. Specifically, our scheme employs a continuous-wave laser and only one electro-optic modulator to simultaneously create a pair of mutually coherent optical frequency combs, each one with a slightly different line spacing. The system operates by measuring this dual-comb spectrum from a sequence of acquired images, in order to recover the spectral response of every spatial point of a sample.

View Article and Find Full Text PDF

In this paper, we propose a high-precision dual-comb ranging (DCR) method for short-distance measurement, avoiding carrier-envelope-offset locking. Cross-polarization detection is introduced, which makes better use of the intrinsic coherence of interferogram pairs over a short distance. We analyze the noise in the DCR system and propose a carrier-wave phase difference (CPD) calculation algorithm based on centroid extraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!