Herein we report an electronically controlled tunable fiber-optic attenuator that leverages the microfluidic electro-wetting effect, which enables a fine-tuning of the solid-liquid interface wetting angle to control the micro-reflector, thus regulating the lens fiber coupling efficiency. Theoretical calculations indicated an optical attenuation regulation effect of 0-45.0 dB in the voltage range of 0-30.0 V. Experimental results align closely with theoretical calculations, demonstrating an attenuation range of 0.59-43.0 dB within a voltage variation range of 0-25.0 V, with control accuracy of 0.56 dB. Our study unveils the potential for designing fiber-optic attenuators with varying tuning accuracy by precisely adjusting the solid-liquid interface wetting angle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.521732 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Unveiling the key influencing factors towards electrode/electrolyte interface control is a long-standing challenge for a better understanding of microscopic electrode kinetics, which is indispensable to building up guiding principles for designer electrocatalysts with desirable functionality. Herein, we exemplify the oxygen evolution reaction (OER) via water molecule oxidation with the iridium dioxide electrocatalyst and uncovered the significant mismatching effect of pH between local electrode surface and bulk electrolyte: the intrinsic OER activity under acidic or near-neutral condition was deciphered to be identical by adjusting this pH mismatching. This result indicates that the local pH effect at the electrified solid-liquid interface plays the main role in the "fake" OER performance.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
Conventional solid/liquid electrochemical interfaces typically encounter challenges with impeded mass transport for poor electrochemical quantification due to the intricate pathways of reactants from the bulk solution. To address this issue, this work reports an innovative approach integrating a target-activated DNA framework nanomachine with electrochemically driven metal-organic framework (MOF) conversion for self-sacrificial biosensing. The presence of the target biomarker serotonin initiates the DNA framework nanomachine by an entropy-driven circuit to form a cross-linked nanostructure and subsequently release the Fe-MOF probe.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Significant progress has been achieved with diversity of short peptide supramolecular assemblies. However, their programmable phase modulation by single stimulus remains a great challenge. Herein, we demonstrate a dipeptide supramolecular system undergoes sequentially coupled phase transitions upon hydrogen bonding association and dissociation triggered by a single fatty acid.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Pr., 119334 Moscow, Russian Federation.
Copper and its alloys with transition metals (as good conductors of electricity and heat) are extensively used in electrical industry, electronics, and cooling systems and can be the subject of surface degradation by oxidation. In certain circumstances, surface degradation of copper occurs catastrophically. Predicting catastrophic oxidation kinetics and developing protective technology require understanding the mass transfer mechanisms in the solid/liquid/gas composite scale formed on the copper surface during catastrophic degradation.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.
ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!