A highly sensitive optical fiber Fabry-Perot interferometer (FPI) for strain measurement with temperature compensation is proposed. Instead of using another actual reference interferometer, a virtual FPI is constructed to superpose with the sensing FPI to form the Vernier effect. The fundamental and the first-order harmonic Vernier effect are generated to increase the sensitivity by adjusting the parameter of the virtual FPI. In order to separate the strain from the environment temperature, an FBG is cascaded to distinguish the applied temperature. Experimental results demonstrate that, with the help of the fundamental Vernier effect, the sensitivity and temperature of the FPI increases from 1.05 pm/°C to 10.63 pm/°C in the temperature range of 40-120°C, and the sensitivity of strain increases from 2.635 pm/µε to 33.11 pm/µε in the strain range of 0-400 µε. In order to access the tracking points more easily and further enhance the sensitivities, the first-order harmonic Vernier effect is generated by modifying the virtual FPI. Results show that the temperature and strain sensitivities are 21.25 pm/°C and 62.25 pm/µε, respectively. In addition, with the help of the FBG, the strain can be separated from the temperature by solving the cross-sensitivity matrix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.517225 | DOI Listing |
Sci Rep
December 2024
Energy Management Department, Luminous Energy Solutions, Calgary, Canada.
The main difficulties facing the operation of parallel converters in DC microgrids (DCMGs) are load sharing, circulation current, and bus voltage regulation. A droop controller is commonly used to control current sharing among parallel DC-DC converters due to its simplicity. However, the values of droop parameters impact both bus voltage regulation and the error in current sharing among converters.
View Article and Find Full Text PDFThe interferometric optical path difference (OPD) induced by changes in the measurand within the microwave band is comparatively smaller than that observed in the realm of lightwave, thereby leading to diminished sensitivity in sapphire fiber Fabry-Perot interferometers (FPIs) within the microwave band. In order to enhance sensitivity, we propose a microwave photonics sensing system predicated on a fiber loop and a virtual FPI. By employing a constructed fiber loop, the propagation path length of the modulated signal can be extended with an increase in the number of loops.
View Article and Find Full Text PDFSensors (Basel)
October 2024
School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China.
The stable flight of drones relies on Global Navigation Satellite Systems (GNSS). However, in complex environments, GNSS signals are prone to interference, leading to flight instability. Inspired by cross-view machine learning, this paper introduces the VDUAV dataset and designs the VRLM network architecture, opening new avenues for cross-view geolocation.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain.
The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (M) using DCM compounds as ligands.
View Article and Find Full Text PDFA highly sensitive optical fiber Fabry-Perot interferometer (FPI) for strain measurement with temperature compensation is proposed. Instead of using another actual reference interferometer, a virtual FPI is constructed to superpose with the sensing FPI to form the Vernier effect. The fundamental and the first-order harmonic Vernier effect are generated to increase the sensitivity by adjusting the parameter of the virtual FPI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!