Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A co-frequency and full-duplex (FD) underwater optical wireless communication (UOWC) system has the potential to significantly enhance spectral efficiency, reduce complexity, and further facilitate UOWC networking. However, the inevitable performance degradation due to self-interference introduced by backscattering presents a significant challenge. In this paper, we first experimentally explore the inherent characteristics of the underwater backscattering channel. Subsequently, we propose a digital-domain backscattering interference cancellation (BIC) algorithm for FD-UOWC systems, incorporating a time-reversal preprocessing. We then experimentally investigate the communication performance of an FD-UOWC system to verify the feasibility of the proposed BIC algorithm under different channel conditions. The experimental results validate the effectiveness of the proposed method, yielding substantial enhancements in bit error rate performance across diverse scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.516949 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!