The laser output characteristics of : crystals were investigated in detail to obtain a dual-wavelength all-solid-state laser. Using 806 nm LD end-face pumped : crystals with lengths of 6 mm, a 1076 & 1080 nm laser outputs with a maximum output power of 3.73 W were obtained, with a slope efficiency of 30.4%, an optical-to-optical conversion efficiency of 28.5%, and a power stability of 0.41% for 4 h of continuous measurement. Furthermore, by suppressing the higher-order modes, a high beam quality laser output with beam quality factors of 2.092 and 1.589 in the and directions, respectively, and a maximum output power of 1.27 W were obtained. In addition, it was experimentally verified that both wavelengths of the output laser were elliptically polarized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.517825 | DOI Listing |
ACS Chem Biol
January 2025
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
OaPAC, the photoactivated adenylyl cyclase from , is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:
The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.
View Article and Find Full Text PDFSmall
January 2025
Leibniz-Institut für Polymerforschung e. V, Hohe Str. 6, 01069, Dresden, Germany.
Polyelectrolyte brushes (PEBs) undergo conformational transitions due to changes in pH and/or ionic strength, which is leveraged as smart surfaces and on-demand drug-release systems. However, probing conformational transitions of functional PEBs has remained challenging due to low spatiotemporal resolution of characterization methods. Herein, fluorescently-coupled PEBs are devised that give rise to Förster Resonance Energy Transfer (FRET) intrinsically coupled to conformational transitions of chains.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
Optoelectronic synapse devices (OESDs) inspired by human visual systems enable to integration of light sensing, memory, and computing functions, greatly promoting the development of in-sensor computing techniques. Herein, dual-mode integration of bipolar response photodetectors (PDs) and artificial optoelectronic synapses based on ZnO/SnSe heterojunctions are presented. The function of the fabricated device can be converted between the PDs and OESDs by modulating the light intensity.
View Article and Find Full Text PDFBioinformatics
January 2025
Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg (JMU), Würzburg, Germany.
Summary: We introduce software for reading, writing and processing fluorescence single-molecule and image spectroscopy data and developing analysis pipelines to unify various spectroscopic analysis tools. Our software can be used for processing multiple experiment types, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!