A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic accuracy measurement method for star trackers using a time-synchronized high-accuracy turntable. | LitMetric

AI Article Synopsis

  • Star trackers are essential for spacecraft navigation, providing precise attitude information that ensures accurate control and prevents failures.
  • The proposed accuracy measurement method utilizes a synchronized high-accuracy swing table to test star trackers under dynamic conditions, allowing for real-time tracking of navigation stars and reducing systematic errors.
  • This new approach offers reliable evaluations of star tracker performance, including sensitivity and capture probability, under conditions similar to those experienced in orbit, making it highly effective for ensuring star tracker accuracy.

Article Abstract

Star trackers are typically used in a spacecraft to provide absolute attitude information to the on-board attitude control system so as to promote high accuracy. The performance of the star tracker is rather important. Attitude incorrectness provided by star trackers may lead to bad navigation with big deviations, even failure of satellites. Therefore, how to realize and verify the accuracy is crucial. As a matter of fact, it is difficult to validate accuracy of star trackers on the ground, especially for star trackers under highly dynamic conditions. In this paper, an accuracy measurement method for star trackers under dynamic conditions is proposed, utilizing a high-accuracy swing table to provide reference to compare. To this end, a swing table, star tracker, and the test equipment are synchronized, in order to reduce systematic errors. As the motion trajectory of the swing table can be set beforehand, the initial attitude of the star tracker can be predicted through a set of coordinate transformations. As a result, the star tracker is able to keep tracking, regardless of the angular velocity of the swing table. This makes the statistical sample points more sufficient and the results more reliable. Moreover, it can evaluate the angular velocity of star trackers up to 20°/s. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets making the measurement results much closer to the on-orbit performance. Lastly, but much more importantly, it can also verify the performance of a star tracker in one experiment, such as sensitivity, static performance, capture probability, and so on. Experimental results demonstrate that the proposed method is effective, especially for highly dynamic star trackers. Such a measurement environment is close to the in-orbit conditions, and it can satisfy the stringent requirement for star trackers under high dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.507209DOI Listing

Publication Analysis

Top Keywords

star trackers
36
star tracker
20
swing table
16
star
14
trackers
9
accuracy measurement
8
measurement method
8
method star
8
performance star
8
highly dynamic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!