Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present an approach for the realization of controlled spiral-shaped mass transfer in azopolymer thin films and the fabrication of spiral microreliefs. For such laser processing, we propose to use light fields with structured polarization distributions generated by a transmissive spatial light modulator. The projection lithography approach is utilized, transferring the pattern directly to the surface of azopolymer thin films. The shaped polarization distributions with different dependencies of the polarization vector orientation on the azimuthal angle allow us to drive surface waves on the sample along a spiral trajectory. Additionally, the ability to control the concavity of the formed microreliefs is demonstrated. This approach can be effectively modified for the direct laser fabrication of more complex nano-/micro-elements as well as their arrays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.521196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!