In optical systems, diffraction limits significantly impact spot simulations. This study addresses this problem by applying the Fourier transform to calculate spots in imaging systems. Typically, a 1 mm image plane suffices; however, mosaic aperture telescopes with notable wavefront discontinuities require an approximately 10 mm simulation image plane. This necessitates high sampling rates for pupils, posing challenges for conventional methods. Our model overcomes this challenge by leveraging an interpolation technique to align multiwavelength spots on a uniform image plane grid, thus effectively analyzing spot translation and spreading in imaging systems with diffraction limits.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.519473DOI Listing

Publication Analysis

Top Keywords

image plane
12
mosaic aperture
8
aperture telescopes
8
systems diffraction
8
diffraction limits
8
imaging systems
8
simulation method
4
method multichromatic
4
multichromatic light
4
light spots
4

Similar Publications

Objective: The aim of this work is to demonstrate how the chronicity of low back pain can modify the trophism of the paraspinal muscles, by performing an ultrasound and MRI evaluation of the paraspinal muscles in the lumbar spine and correlating it to the time of onset of low back pain.

Materials And Methods: An ultrasound evaluation was carried out in the lumbar area with a 5-17 MHz linear probe of the paraspinal muscles of the lumbar region, compared with the MRI of the lumbar spine, in patients presented to our attention for chronic low back pain (> 6 months), from January 2021 to January 2023. In each patient, two series of images were analyzed, in the coronal and sagittal planes.

View Article and Find Full Text PDF

Temporal bone CT is an essential technique for diagnosing ossicular chain trauma, and the location of standard observation planes (SOP) is the foundation of imaging diagnosis. The ossicular chain is small in volume, and there are about 11 standard observation planes for ossicular chain diagnosis, so it is a professional and time-consuming task to label SOPs accurately. An automatic annotation method of SOP is proposed.

View Article and Find Full Text PDF

Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA).

Neuroinformatics

January 2025

Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements.

View Article and Find Full Text PDF

Objectives: Evaluating the impact of an AI-based automated cardiac MRI (CMR) planning software on procedure errors and scan times compared to manual planning alone.

Material And Methods: Consecutive patients undergoing non-stress CMR were prospectively enrolled at a single center (August 2023-February 2024) and randomized into manual, or automated scan execution using prototype software. Patients with pacemakers, targeted indications, or inability to consent were excluded.

View Article and Find Full Text PDF

Broadband coherent Fourier scatterometry: A two-pulse approach.

Rev Sci Instrum

January 2025

Optics Research Group, Imaging Physics Department, Delft University of Technology, Van der Waalsweg 8, 2628 CH Delft, The Netherlands.

We demonstrate a broadband implementation of coherent Fourier scatterometry (CFS) using a supercontinuum source. Spectral information can be resolved by splitting the incident field into two pulses with a variable delay and interfering them at the detector after interaction with the sample, bearing similarities with Fourier-transform spectroscopy. By varying the time delay between the pulses, a collection of diffraction patterns is captured in the Fourier plane, thereby obtaining an interferogram for every camera pixel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!