Effect of Wave Dark Matter on Equal Mass Black Hole Mergers.

Phys Rev Lett

Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom.

Published: May 2024

For dark matter to be detectable with gravitational waves from binary black holes, it must reach higher than average densities in their vicinity. In the case of light (wavelike) dark matter, the density of dark matter between the binary can be significantly enhanced by accretion from the surrounding environment. Here we show that the resulting dephasing effect on the last ten orbits of an equal mass binary is maximized when the Compton wavelength of the scalar particle is comparable to the orbital separation, 2π/μ∼d. The phenomenology of the effect is different from the channels that are usually discussed, where dynamical friction (along the orbital path) and radiation of energy and angular momentum drive the dephasing, and is rather dominated by the radial force (the spacetime curvature in the radial direction) towards the overdensity between the black holes. While our numerical studies limit us to scales of the same order, this effect may persist at larger separations and/or particle masses, playing a significant role in the merger history of binaries.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.211401DOI Listing

Publication Analysis

Top Keywords

dark matter
16
equal mass
8
black holes
8
wave dark
4
matter
4
matter equal
4
mass black
4
black hole
4
hole mergers
4
mergers dark
4

Similar Publications

The corpus callosum, a major white matter region central to cognitive function, is vulnerable to aging. Using zeitgeber time (ZT) aligned with environmental light/dark cycles, we investigated temporal gene expression patterns in the corpus callosum of young (5-month-old) and aged (24-month-old) mice using RNA-seq. Comparative analysis revealed more differentially expressed genes across ZT pairs in young mice than aged mice.

View Article and Find Full Text PDF

The Dark Triad (DT), encompassing narcissism, Machiavellianism and psychopathy traits, poses significant societal challenges. Understanding the neural underpinnings of these traits is crucial for developing effective interventions and preventive strategies. Our study aimed to unveil the neural substrates of the DT by examining brain scans from 201 individuals (mean age: 32.

View Article and Find Full Text PDF

Microbial community structure and water quality performance in local scrubber reclaim system for water reclamation of the semiconductor industry: a case study of a semiconductor plant in Beijing.

Environ Res

January 2025

Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China.

The local scrubber reclaim (LSR) system plays a critical role in water reclamation and in reducing environmental pollution emissions in semiconductor factories. This study monitored the changes in water quality and assessed the key stages of pollutant removal, with a primary focus on evaluating microbial growth and the shifts in microbial community structure and function in the LSR system. The results showed that activated carbon filtration (ACF) effectively removed total organic carbon (TOC) with a removal rate of 59.

View Article and Find Full Text PDF

Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.

View Article and Find Full Text PDF

Any experiment aiming to measure rare events, like Coherent Elastic neutrino-Nucleus Scattering (CE NS) or hypothetical Dark Matter scattering, via nuclear recoils in cryogenic detectors relies crucially on a precise detector calibration at sub-keV energies. The Crab collaboration developed a new calibration technique based on the capture of thermal neutrons inside the target crystal. Together with the Nucleus experiment, first measurements with a moderated Cf neutron source and a cryogenic detector were taken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!