Disordered thin films are a common choice of material for superconducting, high impedance circuits used in quantum information or particle detector physics. A wide selection of materials with different levels of granularity are available, but, despite low microwave losses being reported for some, the high degree of disorder always implies the presence of intrinsic defects. Prominently, quantum circuits are prone to interact with two-level systems (TLS), typically originating from solid state defects in the dielectric parts of the circuit, like surface oxides or tunneling barriers. We present an experimental investigation of TLS in granular aluminum thin films under applied mechanical strain and electric fields. The analysis reveals a class of strongly coupled TLS having electric dipole moments up to 30 eÅ, an order of magnitude larger than dipole moments commonly reported for solid state defects. Notably, these large dipole moments appear more often in films with a higher resistivity. Our observations shed new light on granular superconductors and may have implications for their usage as a quantum circuit material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.217002 | DOI Listing |
J Phys Chem A
December 2024
Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.
Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism with DNA bases can be studied. The higher the oxidation state of Pt (II to IV), the more electrons transfer from the magnesia-gold composite material to the platinum compound.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Fouling-resistant coating materials have important applications in marine industry and biomedicine. Zwitterionic carboxybetaine polymers have demonstrated robust antibiofouling functionalities in experiments. In this work, we performed atomistic molecular dynamics simulations to study the molecular mechanism of hydration and antibiofouling of poly(carboxybetaine acrylamide) (polyCBAA) brush surfaces.
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Center of Excellence African on future Energies and Systems Electrochemical (ACE-FUELS), University Federal Technology, PMB 1526, Owerri, State from Imo, Nigeria.
Computational techniques have been used to analyze the molecules of 10-hydroxycoronahydine (HC) and voacangine hydroxyindolenine (VH) molecules with the aim of studying the effect of base and temperature on their interaction mechanisms during synthesis green magnetite nanoparticles. Density functional theory (DFT) descriptors such as: energy gap, overall reactivity descriptors, dipole moment and adsorption energy have all been explored in depth to understand the nature of the interaction. The DFT results showed that the molecules studied (HC and VH) are interactive and stable in an aqueous medium, due to the fact that these molecules have free electronic doublets on the nitrogen atom and the bond of the aromatic ring.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
School of Physics, Engineering and Technology, University of York, England, YO10 5DD, UK.
Multipolar quantum optics deals with the interaction of light with matter as a many-body bound system of charged particles where the coupling to electromagnetic fields is in terms of the multipolar electric polarization and magnetization. We describe two transformations applied to the conventional non-relativistic formalism, namely a gauge transformation applied directly to the fields at the Lagrangian stage and a unitary transformation applied to the old Hamiltonian. We show how such transformations lead to the same Power-Zienau-Woolley (PZW) formulation of the quantum electrodynamics (QED) of an overall electrically neutral many-body bound system of charges, including the internal motion as well as the gross dynamics of the centre of mass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!